Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 623-636    DOI: 10.11900/0412.1961.2020.00507
  研究论文 本期目录 | 过刊浏览 |
热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响
张家榕1,2, 李艳芬2,3(), 王光全2,4, 包飞洋2,4, 芮祥2,4, 石全强2,3, 严伟2,3, 单以银2,3(), 杨柯2
1.东北大学 材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
4.中国科学技术大学 材料科学与工程学院 沈阳 110016
Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel
ZHANG Jiarong1,2, LI Yanfen2,3(), WANG Guangquan2,4, BAO Feiyang2,4, RUI Xiang2,4, SHI Quanqiang2,3, YAN Wei2,3, SHAN Yiyin2,3(), YANG Ke2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
Jiarong ZHANG, Yanfen LI, Guangquan WANG, Feiyang BAO, Xiang RUI, Quanqiang SHI, Wei YAN, Yiyin SHAN, Ke YANG. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. Acta Metall Sin, 2022, 58(5): 623-636.

全文: PDF(5923 KB)   HTML
摘要: 

采用粉末冶金方法制备了一种具有双峰晶粒结构的超低碳9Cr-ODS (氧化物弥散强化)钢,通过OM、SEM、TEM、显微硬度和拉伸性能测试,研究了热处理工艺对其显微组织和力学性能的影响。结果表明,超低碳9Cr-ODS钢经正火+回火后为回火马氏体组织,具有粗、细晶分明的结构特征。细晶区的平均晶粒尺寸约为1.6 μm,粗晶区的平均晶粒尺寸约为4.3 μm。同时,基体中存在大量的位错结构,且纳米级氧化物数密度可达约1022 m-3。不同的热处理工艺不会改变超低碳9Cr-ODS钢粗、细晶双峰晶粒结构特征。经热处理后,细晶区比粗晶区具有更高的硬度。随正火温度升高,粗、细晶区的显微硬度先上升后下降,且在1100℃正火时达到最高。正火温度一定,回火温度从700℃升高至800℃时,粗、细晶区的显微硬度先下降后上升。700和750℃回火时,组织得到回复,发生软化,温度越高硬度越低;而在800℃回火时,超低碳9Cr-ODS钢因发生部分奥氏体相变导致硬度提高。25℃拉伸实验结果与硬度的变化趋势一致,随回火温度升高,超低碳9Cr-ODS钢的强度先降低后增加,延伸率则呈现相反趋势。700℃拉伸实验结果表明,超低碳9Cr-ODS钢的强度随回火温度的升高稍有降低。结合力学性能及断口分析结果,分析了双峰晶粒结构超低碳9Cr-ODS钢的断裂机制。经1150℃、1 h正火+ 750℃、1 h回火后,超低碳9Cr-ODS钢具有最优的强塑性匹配。

关键词 ODS钢热处理双峰晶粒显微组织力学性能    
Abstract

Oxide dispersion strengthened (ODS) steel is a promising structural material for advanced nuclear power systems. In this study, an ultra-low carbon 9Cr-ODS steel with a bimodal grain structure was prepared using powder metallurgy, and a superior matching of strength and plasticity was expected by adjusting the soft-hard matching of the coarse-grained and fine-grained regions. The effects of heat treatment on microstructure and mechanical properties of the ultra-low carbon 9Cr-ODS steel were evaluated through OM, SEM, TEM, microhardness, and tensile tests. The results demonstrated that the ultra-low carbon 9Cr-ODS steel exhibited a tempered martensite structure after normalizing at 1050-1200oC, and then tempering at 700 and 750oC. Moreover, it presented the microstructure characteristics of coarse-grained and fine-grained regions, in which the average grain size of fine-grained regions was 1.6 μm and that of coarse-grained regions was 4.3 μm. The dislocation density in the ultra-low carbon 9Cr-ODS steel was very high and the number density of nano-scale oxide particles was up to about 1022 m-3. The microhardness in fine-grained regions was higher than that in coarse-grained regions. As the normalizing temperature increased, the microhardness of the ultra-low carbon 9Cr-ODS steel first increased and then decreased. The microhardness reached the highest after normalizing at 1100oC. When the normalizing temperature increased to 1200oC, the microhardness decreased due to the growth of austenitic grains. Regarding the tempering temperature, the microhardness first decreased and then increased as the tempering temperature increased from 700oC to 800oC. Furthermore, the decrease in microhardness when tempering at 700 and 750oC was because the microstructure was recovered and softened. The higher the tempering temperature, the lower the microhardness. However, when tempering at 800oC, the microhardness increased significantly, mainly due to the partial austenite transformation of martensite. The tensile test results at 25oC showed that the strength of the ultra-low carbon 9Cr-ODS steel first decreased and then increased by increasing the tempering temperature, which was consistent with the microhardness change while the opposite was observed for elongation. The tensile test results at 700oC showed that the strength of the ultra-low carbon 9Cr-ODS steel slightly decreased by increasing the tempering temperature. Moreover, the fracture morphology was dominated by fine dimples and secondary tearing, indicating that the ultra-low carbon 9Cr-ODS steel underwent ductile fracture. Combined with the mechanical property and fracture analysis results, the ultra-low carbon 9Cr-ODS steel exhibited superior matching of strength and plasticity after normalizing at 1150oC for 1 h and tempering at 750oC for 1 h.

Key wordsODS steel    heat treatment    bimodal grain    microstructure    mechanical property
收稿日期: 2020-12-18     
ZTFLH:  TG156.1  
基金资助:国家自然科学基金项目(51971217);中国科学院金属研究所优秀学者引进项目(JY7A7A111A1)
作者简介: 单以银, yyshan@imr.ac.cn,主要从事钢铁结构材料研究
张家榕,男,1989年生,博士生
Normalizing processTempering process
1050oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1100oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1150oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
1200oC, 1 h, AC700oC, 1 h, AC or 750oC, 1 h, AC or 800oC, 1 h, AC
表 1  超低碳9Cr-ODS (氧化物弥散强化)钢的热处理制度
图1  球磨前后粉末的SEM像
图2  球磨前后粉末的粒度分布
图3  超低碳9Cr-ODS钢经1150℃、1 h正火和不同温度回火后的OM像
图4  超低碳9Cr-ODS钢分别经不同热处理工艺后的OM像
图5  超低碳9Cr-ODS钢经1150℃、1 h正火+ 750℃、1 h回火后的TEM明场像和高角环形暗场(HAADF)像
图6  超低碳9Cr-ODS钢在不同热处理工艺下的显微硬度
图7  超低碳9Cr-ODS钢在不同热处理工艺下的室温(25℃)拉伸性能
图8  超低碳9Cr-ODS钢在不同热处理工艺下的700℃高温拉伸性能
图9  超低碳9Cr-ODS钢经1150℃、1 h正火 + 不同温度回火后的室温拉伸断口形貌
图10  超低碳9Cr-ODS钢经1150℃正火、1 h + 不同温度回火后的700℃拉伸断口形貌
图11  经1150℃、1 h正火及750℃、1 h回火后粗细晶区的晶粒尺寸分布
图12  双峰晶粒结构超低碳9Cr-ODS钢断裂示意图
1 Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atom. Energy Sci. Technol., 2020, 54: 1638
1 荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
2 Li G X, Zhou B X, Xiao M, et al. Overall development strategy of China's new-generation nuclear fuel [J]. Strateg. Study CAE, 2019, 21: 6
2 李冠兴, 周邦新, 肖 岷 等. 中国新一代核能核燃料总体发展战略研究 [J]. 中国工程科学, 2019, 21: 6
3 Xu Y P, Lü Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
3 徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
4 Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092005
5 Hsiung L L, Fluss M J, Tumey S J, et al. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance [J]. Phys. Rev., 2010, 82B: 184103
6 Feng Y C, Xing W W, Wang S L, et al. First-principles study of hydrogen behaviors at oxide/ferrite interface in ODS steels [J]. Acta Metall. Sin., 2018, 54: 325
6 冯宇超, 邢炜伟, 王寿龙 等. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究 [J]. 金属学报, 2018, 54: 325
7 Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
8 Laurent-Brocq M, Legendre F, Mathon M H, et al. Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels [J]. Acta Mater., 2012, 60: 7150
doi: 10.1016/j.actamat.2012.09.024
9 Zilnyk K D, Oliveira V B, Sandim H R Z, et al. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study [J]. J. Nucl. Mater., 2015, 462: 360
doi: 10.1016/j.jnucmat.2014.12.112
10 Jarugula R, Koppoju S, Jeyaraam R, et al. On the understanding of microstructural evolution during hot deformation of n-ODS-18Cr ferritic steel containing heterogeneous microstructure [J]. Mater. Sci. Eng., 2021, A800: 140343
11 Alam M E, Pal S, Fields K, et al. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy [J]. Mater. Sci. Eng., 2016, A675: 437
12 Steckmeyer A, Praud M, Fournier B, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel [J]. J. Nucl. Mater., 2010, 405: 95
doi: 10.1016/j.jnucmat.2010.07.027
13 Guo L, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
14 Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations [J]. Mater. Sci. Eng., 2013, A559: 101
15 Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
16 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
17 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
18 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
19 Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics [J]. Mater. Sci. Eng., 2014, A598: 106
20 Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h—Mechanical properties and microstructure [J]. Mater. Sci. Eng., 2020, A783: 139292
21 Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800oC [J]. J. Iron Steel Res. Int., 2017, 24: 858
22 Xu Y T, Zhang X Y, Tian Y B, et al. Study on the nucleation and growth of M23C6 carbides in a 10%Cr martensite ferritic steel after long-term aging [J]. Mater. Charact., 2016, 111: 122
doi: 10.1016/j.matchar.2015.11.023
23 Grybėnas A, Makarevičius V, Baltušnikas A, et al. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging [J]. Mater. Sci. Eng., 2017, A696: 453
24 Hu X, Huang L X, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging [J]. Mater. Sci. Eng., 2013, A586: 253
25 Ohtsuka S, Ukai S, Fujiwara M. Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels [J]. J. Nucl. Mater., 2006, 351: 241
doi: 10.1016/j.jnucmat.2006.02.006
26 Das A, Chekhonin P, Altstadt E, et al. Microstructure and fracture toughness characterization of three 9Cr ODS EUROFER steels with different thermo-mechanical treatments [J]. J. Nucl. Mater., 2020, 542: 152464
doi: 10.1016/j.jnucmat.2020.152464
27 Ukai S, Narita T, Alamo A, et al. Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 356
doi: 10.1016/j.jnucmat.2004.04.082
28 Sandim H R Z, Renzetti R A, Padilha A F, et al. Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel [J]. Mater. Sci. Eng., 2010, A527: 3602
29 Wang G Q, Li Y F, Zhang J R, et al. Design and preliminary characterization of a novel carbide-free 9Cr-ODS martensitic steel [J]. Fusion Eng. Des., 2020, 160: 111824
doi: 10.1016/j.fusengdes.2020.111824
30 Shen J J, Yang H L, Li Y F, et al. Microstructural stability of an as-fabricated 12Cr-ODS steel under elevated-temperature annealing [J]. J. Alloys Compd., 2017, 695: 1946
doi: 10.1016/j.jallcom.2016.11.029
31 He P, Hoffmann J, Möslang A. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5%Cr ODS ferritic steel powders by joint application of XAFS and TEM [J]. J. Nucl. Mater., 2018, 501: 381
doi: 10.1016/j.jnucmat.2018.01.021
32 Lu H, Zhang C, Xu J X, et al. Effects of N addition and annealing treatment on microstructures and mechanical properties of ODS steels [J]. J. Nucl. Mater., 2019, 527: 151796
doi: 10.1016/j.jnucmat.2019.151796
33 Oskooie M S, Asgharzadeh H. Strength and ductility enhancement in nanostructured AI6063 with a bimodal grain size distribution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2014, 63: 012022
34 Sun S L, He W W, Zhang M G, et al. Grain growth rule of austenite grain in the heating process of P92 heat-resistant steel [J]. J. Plast. Eng., 2013, 20(3): 92
34 孙述利, 何文武, 张敏刚 等. P92耐热钢加热过程中奥氏体晶粒长大规律 [J]. 塑性工程学报, 2013, 20(3): 92
35 Christ B W, Smith G V. Comparison of the Hall-Petch parameters of zone-refined iron determined by the grain size and extrapolation methods [J]. Acta Metall., 1967, 15: 809
doi: 10.1016/0001-6160(67)90362-8
36 Lu K, Liu X D, Hu Z Q. The Hall-Petch relation in nanocrystalline materials [J]. Chin. J. Mater. Res., 1994, 8: 385
36 卢 柯, 刘学东, 胡壮麒. 纳米晶体材料的Hall-Petch关系 [J]. 材料研究学报, 1994, 8: 385
37 Sun J J, Yang C, Guo S W, et al. A novel process to obtain lamella structured low-carbon steel with bimodal grain size distribution for potentially improving mechanical property [J]. Mater. Sci. Eng., 2020, A785: 139339
38 Guo M X, Zhu J, Zhang Y, et al. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability [J]. Mater. Charact., 2017, 132: 248
doi: 10.1016/j.matchar.2017.08.013
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.