|
|
热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响 |
张家榕1,2, 李艳芬2,3( ), 王光全2,4, 包飞洋2,4, 芮祥2,4, 石全强2,3, 严伟2,3, 单以银2,3( ), 杨柯2 |
1.东北大学 材料科学与工程学院 沈阳 110819 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 4.中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel |
ZHANG Jiarong1,2, LI Yanfen2,3( ), WANG Guangquan2,4, BAO Feiyang2,4, RUI Xiang2,4, SHI Quanqiang2,3, YAN Wei2,3, SHAN Yiyin2,3( ), YANG Ke2 |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.
Jiarong ZHANG,
Yanfen LI,
Guangquan WANG,
Feiyang BAO,
Xiang RUI,
Quanqiang SHI,
Wei YAN,
Yiyin SHAN,
Ke YANG.
Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. Acta Metall Sin, 2022, 58(5): 623-636.
1 |
Rong J, Liu Z. Development and prospect of advanced nuclear energy technology [J]. Atom. Energy Sci. Technol., 2020, 54: 1638
|
1 |
荣 健, 刘 展. 先进核能技术发展与展望 [J]. 原子能科学技术, 2020, 54: 1638
|
2 |
Li G X, Zhou B X, Xiao M, et al. Overall development strategy of China's new-generation nuclear fuel [J]. Strateg. Study CAE, 2019, 21: 6
|
2 |
李冠兴, 周邦新, 肖 岷 等. 中国新一代核能核燃料总体发展战略研究 [J]. 中国工程科学, 2019, 21: 6
|
3 |
Xu Y P, Lü Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32: 2897
|
3 |
徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32: 2897
|
4 |
Zinkle S J, Boutard J L, Hoelzer D T, et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092005
|
5 |
Hsiung L L, Fluss M J, Tumey S J, et al. Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance [J]. Phys. Rev., 2010, 82B: 184103
|
6 |
Feng Y C, Xing W W, Wang S L, et al. First-principles study of hydrogen behaviors at oxide/ferrite interface in ODS steels [J]. Acta Metall. Sin., 2018, 54: 325
|
6 |
冯宇超, 邢炜伟, 王寿龙 等. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究 [J]. 金属学报, 2018, 54: 325
|
7 |
Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
|
8 |
Laurent-Brocq M, Legendre F, Mathon M H, et al. Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels [J]. Acta Mater., 2012, 60: 7150
doi: 10.1016/j.actamat.2012.09.024
|
9 |
Zilnyk K D, Oliveira V B, Sandim H R Z, et al. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study [J]. J. Nucl. Mater., 2015, 462: 360
doi: 10.1016/j.jnucmat.2014.12.112
|
10 |
Jarugula R, Koppoju S, Jeyaraam R, et al. On the understanding of microstructural evolution during hot deformation of n-ODS-18Cr ferritic steel containing heterogeneous microstructure [J]. Mater. Sci. Eng., 2021, A800: 140343
|
11 |
Alam M E, Pal S, Fields K, et al. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy [J]. Mater. Sci. Eng., 2016, A675: 437
|
12 |
Steckmeyer A, Praud M, Fournier B, et al. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel [J]. J. Nucl. Mater., 2010, 405: 95
doi: 10.1016/j.jnucmat.2010.07.027
|
13 |
Guo L, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
|
14 |
Kim J H, Byun T S, Hoelzer D T, et al. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations [J]. Mater. Sci. Eng., 2013, A559: 101
|
15 |
Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58(4): 49
doi: 10.1007/s11837-006-0215-5
|
16 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
17 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
18 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
19 |
Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics [J]. Mater. Sci. Eng., 2014, A598: 106
|
20 |
Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700oC up to 10000 h—Mechanical properties and microstructure [J]. Mater. Sci. Eng., 2020, A783: 139292
|
21 |
Yang X, Liao B, Xiao F R, et al. Ripening behavior of M23C6 carbides in P92 steel during aging at 800oC [J]. J. Iron Steel Res. Int., 2017, 24: 858
|
22 |
Xu Y T, Zhang X Y, Tian Y B, et al. Study on the nucleation and growth of M23C6 carbides in a 10%Cr martensite ferritic steel after long-term aging [J]. Mater. Charact., 2016, 111: 122
doi: 10.1016/j.matchar.2015.11.023
|
23 |
Grybėnas A, Makarevičius V, Baltušnikas A, et al. Correlation between structural changes of M23C6 carbide and mechanical behaviour of P91 steel after thermal aging [J]. Mater. Sci. Eng., 2017, A696: 453
|
24 |
Hu X, Huang L X, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging [J]. Mater. Sci. Eng., 2013, A586: 253
|
25 |
Ohtsuka S, Ukai S, Fujiwara M. Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels [J]. J. Nucl. Mater., 2006, 351: 241
doi: 10.1016/j.jnucmat.2006.02.006
|
26 |
Das A, Chekhonin P, Altstadt E, et al. Microstructure and fracture toughness characterization of three 9Cr ODS EUROFER steels with different thermo-mechanical treatments [J]. J. Nucl. Mater., 2020, 542: 152464
doi: 10.1016/j.jnucmat.2020.152464
|
27 |
Ukai S, Narita T, Alamo A, et al. Tube manufacturing trials by different routes in 9CrW-ODS martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 356
doi: 10.1016/j.jnucmat.2004.04.082
|
28 |
Sandim H R Z, Renzetti R A, Padilha A F, et al. Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel [J]. Mater. Sci. Eng., 2010, A527: 3602
|
29 |
Wang G Q, Li Y F, Zhang J R, et al. Design and preliminary characterization of a novel carbide-free 9Cr-ODS martensitic steel [J]. Fusion Eng. Des., 2020, 160: 111824
doi: 10.1016/j.fusengdes.2020.111824
|
30 |
Shen J J, Yang H L, Li Y F, et al. Microstructural stability of an as-fabricated 12Cr-ODS steel under elevated-temperature annealing [J]. J. Alloys Compd., 2017, 695: 1946
doi: 10.1016/j.jallcom.2016.11.029
|
31 |
He P, Hoffmann J, Möslang A. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5%Cr ODS ferritic steel powders by joint application of XAFS and TEM [J]. J. Nucl. Mater., 2018, 501: 381
doi: 10.1016/j.jnucmat.2018.01.021
|
32 |
Lu H, Zhang C, Xu J X, et al. Effects of N addition and annealing treatment on microstructures and mechanical properties of ODS steels [J]. J. Nucl. Mater., 2019, 527: 151796
doi: 10.1016/j.jnucmat.2019.151796
|
33 |
Oskooie M S, Asgharzadeh H. Strength and ductility enhancement in nanostructured AI6063 with a bimodal grain size distribution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2014, 63: 012022
|
34 |
Sun S L, He W W, Zhang M G, et al. Grain growth rule of austenite grain in the heating process of P92 heat-resistant steel [J]. J. Plast. Eng., 2013, 20(3): 92
|
34 |
孙述利, 何文武, 张敏刚 等. P92耐热钢加热过程中奥氏体晶粒长大规律 [J]. 塑性工程学报, 2013, 20(3): 92
|
35 |
Christ B W, Smith G V. Comparison of the Hall-Petch parameters of zone-refined iron determined by the grain size and extrapolation methods [J]. Acta Metall., 1967, 15: 809
doi: 10.1016/0001-6160(67)90362-8
|
36 |
Lu K, Liu X D, Hu Z Q. The Hall-Petch relation in nanocrystalline materials [J]. Chin. J. Mater. Res., 1994, 8: 385
|
36 |
卢 柯, 刘学东, 胡壮麒. 纳米晶体材料的Hall-Petch关系 [J]. 材料研究学报, 1994, 8: 385
|
37 |
Sun J J, Yang C, Guo S W, et al. A novel process to obtain lamella structured low-carbon steel with bimodal grain size distribution for potentially improving mechanical property [J]. Mater. Sci. Eng., 2020, A785: 139339
|
38 |
Guo M X, Zhu J, Zhang Y, et al. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability [J]. Mater. Charact., 2017, 132: 248
doi: 10.1016/j.matchar.2017.08.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|