|
|
3Mn-0.2C中锰钢形变诱导铁素体动态相变机理 |
孙毅1,2, 郑沁园2,3, 胡宝佳2,3, 王平1( ), 郑成武2,3( ), 李殿中2,3 |
1.东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3.中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel |
SUN Yi1,2, ZHENG Qinyuan2,3, HU Baojia2,3, WANG Ping1( ), ZHENG Chengwu2,3( ), LI Dianzhong2,3 |
1.Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
Yi SUN,
Qinyuan ZHENG,
Baojia HU,
Ping WANG,
Chengwu ZHENG,
Dianzhong LI.
Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. Acta Metall Sin, 2022, 58(5): 649-659.
1 |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
|
2 |
Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications [J]. Steel Res Int., 2013, 84: 937
|
3 |
Tang D, Zhao Z Z, Mi Z L, et al. Advanced High Strength Strip Steel for Automobile [M]. Beijing: Metallurgical Industry Press, 2016: 1
|
3 |
唐 荻, 赵征志, 米振莉 等. 汽车用先进高强板带钢 [M]. 北京: 冶金工业出版社, 2016: 1
|
4 |
Raabe D, Sun B H, Silva A K D, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels [J]. Metall. Mater. Trans., 2020, 51A: 5517
|
5 |
Fonstein N. Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties [M]. New York: Springer, 2015: 1
|
6 |
Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
|
6 |
王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
|
7 |
Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. J. Iron Steel Res., 2020, 32: 1059
|
7 |
赵征志, 陈伟健, 高鹏飞 等. 先进高强度汽车用钢研究进展及展望 [J]. 钢铁研究学报, 2020, 32: 1059
|
8 |
Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
doi: 10.1179/1743284714Y.0000000722
|
9 |
Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
|
10 |
Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications [J]. Mater. Sci. Technol., 2017, 33: 1713
doi: 10.1080/02670836.2017.1312208
|
11 |
Liu L, He B B, Huang M X. The role of transformation-induced plasticity in the development of advanced high strength steels [J]. Adv. Eng. Mater., 2018, 20: 1701083
doi: 10.1002/adem.201701083
|
12 |
Jacques P J. Transformation-induced plasticity for high strength formable steels [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 259
doi: 10.1016/j.cossms.2004.09.006
|
13 |
Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
doi: 10.1016/j.scriptamat.2011.04.010
|
14 |
Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
|
15 |
Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
|
16 |
Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility [J]. Chin. J. Mater. Res., 2019, 33: 927
|
16 |
张喜亮, 侯华峰, 刘 涛 等. 一种新型高强塑积异质冷轧中锰钢的力学性能 [J]. 材料研究学报, 2019, 33: 927
|
17 |
Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
doi: 10.1016/j.scriptamat.2019.11.033
|
18 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
19 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
20 |
Hu B, Luo H W, Yang F, et al. Recent progress in medium Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
|
21 |
Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel [J]. Metall. Mater. Trans., 2010, 41A: 397
|
22 |
Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP Steel with maximal ultimate strength and moderate ductility [J]. Metall. Mater. Trans., 2014, 45A: 5624
|
23 |
Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
|
23 |
邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
|
24 |
Li S S, Wen P Y, Li S L, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening [J]. Acta Mater., 2021, 205: 116567
doi: 10.1016/j.actamat.2020.116567
|
25 |
Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel [J]. Mater. Sci. Eng., 2018, A715: 25
|
26 |
Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
|
27 |
Essadiqi E, Jonas J J. Effect of deformation on the austenite-to-ferrite transformation in a plain carbon and two microalloyed steels [J]. Metall. Trans., 1988, 19A: 417
|
28 |
Dong H, Sun X J. Deformation induced ferrite transformation in low carbon steels [J]. Curr. Opin. Solid State Mater. Sci., 2005, 9: 269
doi: 10.1016/j.cossms.2006.02.014
|
29 |
Hurley P J, Hodgson P D. Formation of ultra-fine ferrite in hot rolled strip: Potential mechanisms for grain refinement [J]. Mater. Sci. Eng., 2001, A302: 206
|
30 |
Wen Y Q. Ultra-Fine Grained Steels [M]. Beijing: Metallurgical Industry Press, 2003: 1
|
30 |
翁宇庆. 超细晶钢 [M]. 北京: 冶金工业出版社, 2003: 1
|
31 |
Chen M M, Wu R M, Liu H P, et al. An ultrahigh strength steel produced through deformation-induced ferrite transformation and Q&P process [J]. Sci. China Technol. Sci., 2012, 55: 1827
doi: 10.1007/s11431-012-4880-z
|
32 |
Ito A, Matsui Y, Bai Y, et al. Ferrite transformation and mechanical properties of medium manganese steel [A]. Proceedings of 1st International Conference on Automobile Steel and 3rd International Conference on High Manganese Steels [C]. Beijing: Metallurgical Industry Press, 2016: 123
|
33 |
Hou F F, Bai Y, Shibata A, et al. Microstructure evolution during thermomechanical processing in 3Mn-0.1C medium-Mn steel [J]. Mater. Sci. Technol., 2019, 35: 2101
doi: 10.1080/02670836.2018.1548099
|
34 |
Beladi H, Kelly G L, Hodgson P D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing [J]. Int. Mater. Rev., 2007, 52: 14
doi: 10.1179/174328006X102538
|
35 |
Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
doi: 10.1016/j.pmatsci.2016.04.004
|
36 |
Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel [J]. Acta Mater., 2014, 65: 251
doi: 10.1016/j.actamat.2013.10.067
|
37 |
Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
doi: 10.1016/j.scriptamat.2019.02.017
|
38 |
Zheng C W, Xiao N M, Hao L H, et al. Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel [J]. Acta Mater., 2009, 57: 2956
doi: 10.1016/j.actamat.2009.03.005
|
39 |
Zheng C W, Li D Z, Lu S P, et al. On the ferrite refinement during the dynamic strain-induced transformation: A cellular automaton modeling [J]. Scr. Mater., 2008, 58: 838
doi: 10.1016/j.scriptamat.2007.12.040
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|