Please wait a minute...
金属学报  2022, Vol. 58 Issue (5): 649-659    DOI: 10.11900/0412.1961.2021.00192
  研究论文 本期目录 | 过刊浏览 |
3Mn-0.2C中锰钢形变诱导铁素体动态相变机理
孙毅1,2, 郑沁园2,3, 胡宝佳2,3, 王平1(), 郑成武2,3(), 李殿中2,3
1.东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学技术大学 材料科学与工程学院 沈阳 110016
Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel
SUN Yi1,2, ZHENG Qinyuan2,3, HU Baojia2,3, WANG Ping1(), ZHENG Chengwu2,3(), LI Dianzhong2,3
1.Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
Yi SUN, Qinyuan ZHENG, Baojia HU, Ping WANG, Chengwu ZHENG, Dianzhong LI. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. Acta Metall Sin, 2022, 58(5): 649-659.

全文: PDF(5862 KB)   HTML
摘要: 

利用Gleeble热模拟、SEM、EBSD和EPMA等方法,研究了3Mn-0.2C中锰钢热变形中发生的形变诱导铁素体相变的组织转变行为,分析了中锰钢形变诱导超细晶组织的形成机理及其在热变形后亚动态过程中的组织稳定性。结果表明,3Mn-0.2C中锰钢在α + γ两相区变形时会诱发形变诱导铁素体相变,通过相变形成由超细晶铁素体、细小残余奥氏体和马氏体组成的多相组织。形变诱导铁素体以不饱和形核和有限生长的模式进行相变,这是导致铁素体晶粒超细化的重要机理。同时,在超细晶铁素体晶界及三叉晶界处形成的细小富Mn残余奥氏体使形变诱导相变组织具有优异的组织稳定性。

关键词 热变形超细晶铁素体Mn配分形变诱导铁素体相变中锰钢    
Abstract

Medium Mn steels (MMSs) have Mn contents of 3%-12% (mass fraction), and have been energetically investigated as the most promising candidates of the third-generation advanced high-strength steel. Their phase transformations and microstructures during various heat treatments and thermomechanical processes have received wide attention with the purpose to achieve an optimal balance of cost-efficient alloying compositions and mechanical properties. The aim of this work is to investigate the microstructural behavior of deformation-induced ferrite transformation (DIFT), starting from austenite, which occurs in MMS. Then, improved understandings of the formation of ultrafine ferrite via the DIFT and conservation of this microstructure during the post-deformation period can be obtained. For this purpose, a 3Mn-0.2C MMS with lower contents of alloying elements was selected. Microstructures and alloying element distributions of the thermomechanically processed samples were analyzed via EBSD and EPMA. The results showed that the DIFT occurred in the thermomechanically processed 3Mn-0.2C MMS in the α + γ region. Characteristic multiphase microstructures consisting isolated martensite and fine-grained equiaxed ferrite concomitant with fine islands of retained austenite dispersed between ferrite grains can be obtained. During the DIFT, the enhanced nucleation of ferrite at α/γ interfaces can not only increase the ferrite nucleation density but also facilitate extensive impingement among the neighboring grains. Formation of ultrafine ferrite via the DIFT in MMS can be interpreted in terms of unsaturated nucleation and limited growth. In addition, partitioning of Mn between the ultrafine ferrite and austenite is accelerated during the DIFT such that a large number of Mn-enriched fine islands of austenite are left untransformed at the α/α grain boundaries or at triple junctions. These islands of austenite are considered to play critical roles not only for obtaining retained austenite at room temperature but also for conserving the ultrafine microstructure of the DIFT during the post-deformation processing.

Key wordshot deformation    ultra-fine grained ferrite    Mn partitioning    deformation induced ferrite transformation    medium Mn steel
收稿日期: 2021-05-07     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(52071322);国家自然科学基金项目(51771192);国家自然科学基金项目(U1708252)
作者简介: 孙 毅,男,1995年生,硕士生
图1  3Mn-0.2C中锰钢(MMS)形变诱导铁素体相变实验及等温铁素体相变实验的工艺示意图
图2  3Mn-0.2C MMS在660℃、0.001 s-1条件下变形的真应力-真应变曲线及不同应变时微观组织的EBSD像
图3  3Mn-0.2C MMS在T = 660℃保温1800 s后和相同温度下以应变速率 ε˙ = 0.001 s-1变形至应变ε = 0.51的SEM像
图4  3Mn-0.2C MMS在T = 660℃、 ε˙ = 0.001 s-1条件下变形至不同应变时微观组织的EBSD像
图5  3Mn-0.2C MMS在T = 660℃、 ε˙ = 0.001 s-1条件下变形至ε = 0.92时的SEM像及合金元素分布
图6  3Mn-0.2C MMS在T = 660℃、 ε˙ = 0.001 s-1下变形至ε = 0.92时的微观组织与变形后在相同温度保温1000 s后微观组织的EBSD像
图7  3Mn-0.2C MMS在T = 660℃、 ε˙ = 0.001 s-1下变形至ε = 0.92及变形后在相同温度保温1000 s后的SEM像及Mn元素分布
图8  3Mn-0.2C MMS在T = 660℃下以不同应变速率变形至ε = 0.92时微观组织的EBSD像
图9  3Mn-0.2C MMS在T = 660℃以不同应变速率变形至ε = 0.92时的SEM像及C、Mn元素的分布
图10  中锰钢中形变诱导铁素体相变的微观组织演变示意图
1 Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
2 Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications [J]. Steel Res Int., 2013, 84: 937
3 Tang D, Zhao Z Z, Mi Z L, et al. Advanced High Strength Strip Steel for Automobile [M]. Beijing: Metallurgical Industry Press, 2016: 1
3 唐 荻, 赵征志, 米振莉 等. 汽车用先进高强板带钢 [M]. 北京: 冶金工业出版社, 2016: 1
4 Raabe D, Sun B H, Silva A K D, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels [J]. Metall. Mater. Trans., 2020, 51A: 5517
5 Fonstein N. Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties [M]. New York: Springer, 2015: 1
6 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56: 400
6 王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56: 400
doi: 10.11900/0412.1961.2019.00371
7 Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. J. Iron Steel Res., 2020, 32: 1059
7 赵征志, 陈伟健, 高鹏飞 等. 先进高强度汽车用钢研究进展及展望 [J]. 钢铁研究学报, 2020, 32: 1059
8 Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
doi: 10.1179/1743284714Y.0000000722
9 Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
doi: 10.1016/j.scriptamat.2016.07.013
10 Ma Y. Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications [J]. Mater. Sci. Technol., 2017, 33: 1713
doi: 10.1080/02670836.2017.1312208
11 Liu L, He B B, Huang M X. The role of transformation-induced plasticity in the development of advanced high strength steels [J]. Adv. Eng. Mater., 2018, 20: 1701083
doi: 10.1002/adem.201701083
12 Jacques P J. Transformation-induced plasticity for high strength formable steels [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 259
doi: 10.1016/j.cossms.2004.09.006
13 Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning [J]. Scr. Mater., 2011, 65: 225
doi: 10.1016/j.scriptamat.2011.04.010
14 Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
15 Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels [J]. Metall. Mater. Trans., 1972, 3B: 905
16 Zhang X L, Hou H F, Liu T, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility [J]. Chin. J. Mater. Res., 2019, 33: 927
16 张喜亮, 侯华峰, 刘 涛 等. 一种新型高强塑积异质冷轧中锰钢的力学性能 [J]. 材料研究学报, 2019, 33: 927
17 Li Y, Li W, Min N, et al. Mechanical response of a medium manganese steel with encapsulated austenite [J]. Scr. Mater., 2020, 178: 211
doi: 10.1016/j.scriptamat.2019.11.033
18 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
19 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
20 Hu B, Luo H W, Yang F, et al. Recent progress in medium Mn steels made with new designing strategies, a review [J]. J. Mater. Sci. Technol., 2017, 33: 1457
doi: 10.1016/j.jmst.2017.06.017
21 Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel [J]. Metall. Mater. Trans., 2010, 41A: 397
22 Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP Steel with maximal ultimate strength and moderate ductility [J]. Metall. Mater. Trans., 2014, 45A: 5624
23 Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility [J]. Acta Metall. Sin., 2019, 55: 191
23 邵成伟, 惠卫军, 张永健 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能 [J]. 金属学报, 2019, 55: 191
doi: 10.11900/0412.1961.2018.00081
24 Li S S, Wen P Y, Li S L, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening [J]. Acta Mater., 2021, 205: 116567
doi: 10.1016/j.actamat.2020.116567
25 Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel [J]. Mater. Sci. Eng., 2018, A715: 25
26 Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Prog. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
27 Essadiqi E, Jonas J J. Effect of deformation on the austenite-to-ferrite transformation in a plain carbon and two microalloyed steels [J]. Metall. Trans., 1988, 19A: 417
28 Dong H, Sun X J. Deformation induced ferrite transformation in low carbon steels [J]. Curr. Opin. Solid State Mater. Sci., 2005, 9: 269
doi: 10.1016/j.cossms.2006.02.014
29 Hurley P J, Hodgson P D. Formation of ultra-fine ferrite in hot rolled strip: Potential mechanisms for grain refinement [J]. Mater. Sci. Eng., 2001, A302: 206
30 Wen Y Q. Ultra-Fine Grained Steels [M]. Beijing: Metallurgical Industry Press, 2003: 1
30 翁宇庆. 超细晶钢 [M]. 北京: 冶金工业出版社, 2003: 1
31 Chen M M, Wu R M, Liu H P, et al. An ultrahigh strength steel produced through deformation-induced ferrite transformation and Q&P process [J]. Sci. China Technol. Sci., 2012, 55: 1827
doi: 10.1007/s11431-012-4880-z
32 Ito A, Matsui Y, Bai Y, et al. Ferrite transformation and mechanical properties of medium manganese steel [A]. Proceedings of 1st International Conference on Automobile Steel and 3rd International Conference on High Manganese Steels [C]. Beijing: Metallurgical Industry Press, 2016: 123
33 Hou F F, Bai Y, Shibata A, et al. Microstructure evolution during thermomechanical processing in 3Mn-0.1C medium-Mn steel [J]. Mater. Sci. Technol., 2019, 35: 2101
doi: 10.1080/02670836.2018.1548099
34 Beladi H, Kelly G L, Hodgson P D. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing [J]. Int. Mater. Rev., 2007, 52: 14
doi: 10.1179/174328006X102538
35 Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
doi: 10.1016/j.pmatsci.2016.04.004
36 Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel [J]. Acta Mater., 2014, 65: 251
doi: 10.1016/j.actamat.2013.10.067
37 Shibata A, Takeda Y, Park N, et al. Nature of dynamic ferrite transformation revealed by in-situ neutron diffraction analysis during thermomechanical processing [J]. Scr. Mater., 2019, 165: 44
doi: 10.1016/j.scriptamat.2019.02.017
38 Zheng C W, Xiao N M, Hao L H, et al. Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel [J]. Acta Mater., 2009, 57: 2956
doi: 10.1016/j.actamat.2009.03.005
39 Zheng C W, Li D Z, Lu S P, et al. On the ferrite refinement during the dynamic strain-induced transformation: A cellular automaton modeling [J]. Scr. Mater., 2008, 58: 838
doi: 10.1016/j.scriptamat.2007.12.040
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[4] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[5] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[6] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[7] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[8] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[9] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[10] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[11] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[12] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[15] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.