Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1438-1454    DOI: 10.11900/0412.1961.2021.00352
  综述 本期目录 | 过刊浏览 |
高强亚稳β钛合金变形机制及其组织调控方法
李金山1,2(), 唐斌1,2, 樊江昆1,2(), 王川云1, 花珂1, 张梦琪1, 戴锦华1, 寇宏超1,2
1.西北工业大学 凝固技术国家重点实验室 西安 710072
2.西北工业大学 重庆科创中心 重庆 401135
Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy
LI Jinshan1,2(), TANG Bin1,2, FAN Jiangkun1,2(), WANG Chuanyun1, HUA Ke1, ZHANG Mengqi1, DAI Jinhua1, KOU Hongchao1,2
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2.Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
引用本文:

李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
Jinshan LI, Bin TANG, Jiangkun FAN, Chuanyun WANG, Ke HUA, Mengqi ZHANG, Jinhua DAI, Hongchao KOU. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. Acta Metall Sin, 2021, 57(11): 1438-1454.

全文: PDF(4011 KB)   HTML
摘要: 

亚稳β钛合金具有密度低、比强度高以及成形能力好等优异的综合特征,已经在对强韧性要求极高的航空航天结构件上获得应用,用以替代传统的高强度钢,实现显著的结构减重的同时大幅度提升飞行器性能。热成形技术与热处理工艺相结合是制备高强亚稳β钛合金结构件的主要手段,而制定优化工艺的前提是对合金的变形机制形成完整的认识,进而实现合金构件的组织-性能一体化调控。同时,明晰高强亚稳β钛合金的变形机制与宏观力学性能间的关系也有助于进一步研发新型合金,满足飞行器对更高性能材料的需求。因此,本文围绕高强亚稳β钛合金变形机制及其组织调控方法,首先概述了合金的室温塑性变形机制研究进展,阐述了β基体稳定性的影响因素及其相应的变形机制演变规律,分析了α析出相的特征对位错运动的综合影响,以及由此所造成的力学性能表现。然后,总结了高强亚稳β钛合金的热变形行为与机制,分析了合金在不同相区以及不同变形阶段所对应的组织演变规律和变形机制,探讨了合金在热变形过程中的加工硬化与流变软化行为。最后,简述了高强亚稳β钛合金组织调控过程中动态回复/动态再结晶与动态相变的复杂交互作用,论述了多尺度计算模型在合金组织与性能预测方面的研究现状与发展趋势。

关键词 亚稳β钛合金变形机制组织调控再结晶相变    
Abstract

Metastable β titanium alloy has excellent overall properties, including low density, high specific strength, and good forming ability. Therefore, it has been successfully used to replace traditional high-strength steels in aerospace structural components with extremely-high strength requirements, resulting in significant structural weight reduction effects and greatly improved aircraft performance. The main method for preparing high-strength metastable β titanium alloy structural components is the combination of hot forming technology and heat treatment. The prerequisite for formulating and optimizing the processes is a thorough understanding of the alloy's deformation mechanism, followed by integrated control of the microstructure and properties of the components. Meanwhile, elucidating the relationship between the high-strength metastable β titanium alloy's deformation mechanism and its micromechanical properties will aid in the development of new alloys to meet the needs of aircraft for higher performance materials. Therefore, in this article, the deformation mechanism of the high-strength metastable β titanium alloy and its microstructure control methods was focused on and discussed, and first summarizes the research progress of the plastic deformation mechanism at room temperature, expounds the factors affecting the stability of the β matrix and the corresponding deformation mechanism evolution, analogizes the comprehensive influence of α phase characteristics on dislocation movement and the resulting mechanical performance. Furthermore, this article summarizes the hot deformation behavior and mechanism of a high-strength metastable β titanium alloy, analyzes the alloy's microstructure evolution and deformation mechanism in different phase regions and deformation stages, and discusses the alloy's work hardening and softening behaviors during hot deformation. Finally, the complex interaction of dynamic recovery or dynamic recrystallization and dynamic phase transformation in the microstructure control process of high-strength metastable β titanium alloy is briefly described, and the research status and development trend of multi-scale calculation models in alloy microstructure and performance prediction are discussed.

Key wordsmetastable β titanium alloy    deformation mechanism    microstructure control    recrystallization    phase transformation
收稿日期: 2021-08-23     
ZTFLH:  TG146.23  
基金资助:国家重点研发计划项目(2016YFB0701303);国家自然科学基金项目(51801156);重庆市自然科学基金项目(cstc2020jcyj-msxmX1056)
图1  亚稳β钛合金室温变形机制演化示意图 [12~14](a) deformation induced martensite transformation/mechanical twinning[12](b) multimodal mechanical twinning[13] (c) dislocation slip[14]
图2  bcc金属材料中螺位错结构与形态特征分析[14,21,22](a) differential displacement map illustrating the core structure of screw dislocations in bcc metals[21](b) in-situ TEM observation of the screw dislocations during the straining of Ti-23Nb-0.7Ta-2Zr-0.4Si alloy (t—framing time. The imaging condition was indicated by the g vector and Burgers vector b, of dislocations. Dislocations with different morphological features were highlighted by A and B, respectively)[22](c) dislocation dipoles in deformed microstructure of Ti-11.4Al-11.7Mo-1.9VSi alloy (A diffraction pattern along<11ˉ0> zone axis was inserted to ease the identification of Burgers vector of observed dislocations)[14]
图3  亚稳β钛合金中细密α相多层级组织特征[30,31](a) EBSD map illustrating the microstructure of Ti-5553 alloy containing all Burgers orientation relationship (BOR) α variants(b) pole figures of β matrix and α variants in Fig.3a(c) TEM micrograph presenting ternary α variants indicated by white, red, and blue, respectively (The image was conducted along <111> zone axis with varied g vector selected for dark field (DF) condition as shown in the inserted diffraction pattern)(d) pyramidal arrangement of α vriants[30](e) DF TEM image of microstructure containing dense α precipitates (This micrograph was obtained using a/2 <112> spot highlighted in the corresponding diffraction pattern along <11ˉ0> zone axis. A square area of 1 μm2 was inserted to ease the quantitative investigation on the density of nano-precipitates)[31]
图4  β基体滑移切过不同α变体的影响因素分析[35](a) a deformed micropillar with a high geometrical compatibility factor regarding to the slip systems in β matrix and α variant(b) an equivalent investigation on the micropillar having an intermediate m' between the slip systems in β matrix and α variant
图5  Ti-7333合金在等温热压缩变形过程中晶界α相的析出行为[67](a) SEM image of Ti-7333 alloy after hot deformation (b) high magnified image of the area in Fig.6a(c) strain distribution map and corresponding high magnified map of Ti-7333 alloy after hot deformation (LD—loading direction. The color of the ruler represents the strain of each point relative to the base point)(d) strain-stress curve of the Ti-7333 alloy after hot deformation (E—elastic modulus)
图6  Ti-7333合金热变形后显示的晶界处的位错塞积[67]
图7  Ti-55531合金热变形过程中的微观组织演化[63](a) non deformed (b) 0.2 of strain at 0.01 s-1 (c) 0.7 of strain at 0.01 s-1 (d) 0.7 of strain at 1 s-1
图8  Ti-5553合金在两相区高温区间和低温区间热压缩变形过程中显微组织演变示意图[83,85]
图9  Ti-5553合金EBSD像及α/β偏离BOR角度计算[83](a) heat treated at 800oC for 40 min(b) hot compressed at 800oC to strain of 1.2 under a strain rate of 0.0005 s-1 (CD—compression direction, RD1—radial direction 1, RD2—radial direction 2)
图10  热机械过程的不同阶段和对应微观组织演变及其示意图[94]
图11  热力耦合作用下Ti-5553合金DRV/DRX和相变过程竞争机制及相转变曲线(TTT)示意图[99]
图12  基于集成计算的钛合金组织调控技术路线图
1 Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys [J]. J. Aeronaut. Mater., 2020, 40(3): 63
1 陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势 [J]. 航空材料学报, 2020, 40(3): 63
2 Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys [J]. Chin. J. Rare Met., 2011, 35: 575
2 杨冬雨, 付艳艳, 惠松骁等. 高强高韧钛合金研究与应用进展 [J]. 稀有金属, 2011, 35: 575
3 Yang J. Application of titanium alloy in aircraft [J]. Aeronaut. Manuf. Technol., 2006, (11): 41
3 杨 健. 钛合金在飞机上的应用 [J]. 航空制造技术, 2006, (11): 41
4 Cao C X. Applications of titanium alloys on large transporter [J]. Rare Met. Lett., 2006, 25(1): 17
4 曹春晓. 钛合金在大型运输机上的应用 [J]. 稀有金属快报, 2006, 25(1): 17
5 Han D, Zhang P S, Mao X N, et al. Research progress of BT22 titanium alloy and its large forgings [J]. Mater. Rep., 2010, 24(3): 46
5 韩 栋, 张鹏省, 毛小南等. BT22钛合金及其大型锻件的研究进展 [J]. 材料导报, 2010, 24(3): 46
6 Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
7 Zhao Y Q, Ge P, Xin S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Mater. China, 2020, 39: 527
7 赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39: 527
8 Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 [J]. Mater. Des., 2013, 49: 945
9 Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
10 Wang H, Zhao Y Q, Xin S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. J. Aeronaut. Mater., 2018, 38(4): 56
10 王 欢, 赵永庆, 辛社伟等. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56
11 Salvador C A F, Opini V C, Mello M G, et al. Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy [J]. Mater. Sci. Eng., 2019, A743: 716
12 Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
13 Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
14 Wang C, Li N, Cui Y, et al. Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr β-Ti alloys [J]. Scr. Mater., 2018, 149: 129
15 Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scr. Mater., 2012, 66: 749
16 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
17 Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095
18 Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
19 Fu Y, Xiao W L, Kent D, et al. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy [J]. Scr. Mater., 2020, 187: 285
20 Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
21 Gröger R, Vitek V. Directional versus central-force bonding in studies of the structure and glide of 1/2<111> screw dislocations in bcc transition metals [J]. Philos. Mag., 2009, 89: 3163
22 Castany P, Besse M, Gloriant T. In situ TEM study of dislocation slip in a metastable β titanium alloy [J]. Scr. Mater., 2012, 66: 371
23 Vitek V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
24 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
25 Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
26 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
27 Wang C Y, Yang L W, Cui Y W, et al. High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys [J]. Mater. Des., 2018, 137: 371
28 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
29 Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 165
30 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
31 Wang C, Monclús M A, Yang L, et al. Effect of nanoscale α precipitation on slip activity in ultrastrong beta titanium alloys [J]. Mater. Lett., 2020, 264: 127398
32 Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019
33 Kwasniak P, Clouet E. Influence of simple metals on the stability of <a> basal screw dislocations in hexagonal titanium alloys [J]. Acta Mater., 2019, 180: 42
34 Caillard D, Gaumé M, Onimus F. Glide and cross-slip of a-dislocations in Zr and Ti [J]. Acta Mater., 2018, 155: 23
35 Wang C Y, Zhang N, Kou H C, et al. A micro-nano mechanical investigation on the influnce of α phase on mobile dislocations in metastable β titanium alloy [R]. Xiamen: Chinese Materials Conference, 2021
35 王川云, 张 宁, 寇宏超等. 亚稳β钛合金中α相对位错运动影响规律的微纳力学研究 [R]. 厦门: 中国材料大会, 2021
36 Balachandran S, Kashiwar A, Choudhury A, et al. On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy [J]. Acta Mater., 2016, 106: 374
37 Kou W J, Sun Q Y, Xiao L, et al. Superior plasticity stability and excellent strength in Ti-55531 alloy micropillars via harmony slip in nanoscale α/β phases [J]. Sci. Rep., 2019, 9: 5075
38 Eyckens P, Mulder H, Gawad J, et al. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling [J]. Int. J. Plast., 2015, 73: 119
39 Fujita N, Ishikawa N, Roters F, et al. Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents [J]. Int. J. Plast., 2018, 104: 39
40 Khan A S, Liu J. A deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals [J]. Int. J. Plast., 2016, 86: 56
41 Kestens L A I, Pirgazi H. Texture formation in metal alloys with cubic crystal structures [J]. Mater. Sci. Technol., 2016, 32: 1303
42 Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O [J]. Int. J. Plast., 2015, 75: 226
43 Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
44 Khan A S, Suh Y S, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. Int. J. Plast., 2004, 20: 2233
45 Khan A S, Kazmi R, Farrokh B, et al. Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti-6Al-4V alloys: Experiments and modeling over a wide range of strain-rates and temperatures [J]. Int. J. Plast., 2007, 23: 1105
46 Liu J, Khan A S, Takacs L, et al. Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: Experiments, modeling and simulation [J]. Int. J. Plast., 2015, 64: 151
47 Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model [J]. Int. J. Plast., 2017, 94: 57
48 Meredith C S, Khan A S. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing [J]. Int. J. Plast., 2012, 30-31: 202
49 Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
50 Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: Experimental study and modeling [J]. Int. J. Plast., 2015, 66: 119
51 Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method [J]. Int. J. Plast., 2018, 106: 73
52 Wang J, Moumni Z, Zhang W H. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys [J]. Int. J. Plast., 2017, 97: 194
53 Xiao Y, Zeng P, Lei L P. Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy [J]. Int. J. Plast., 2018, 107: 164
54 Hall A. Primary processing of beta and near beta titanium alloys [A]. Beta Titanium Alloys in the 1980's [C]. Metallurgical Society of AIME, 1984: 129
55 Bourell D L, McQueen H J. Thermomechanical processing of iron, titanium, and zirconium alloys in the bcc structure [J]. J. Mater. Shaping Technol., 1987, 5: 53
56 Bao J X, Lv S D, Zhang M W, et al. Multi-scale coupling effects on flow localization during micro-compression deformation of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2020, A793: 139888
57 Hua K, Xue X Y, Kou H C, et al. High temperature deformation behaviour of Ti-5Al-5Mo-5V-3Cr during thermomechanical processing [J]. Mater. Res. Innovations, 2014, 18(suppl.4): S4-202
58 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
59 Zhao Y L, Li B L, Zhu Z S, et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 5360
60 Zhou W, Ge P, Zhao Y Q, et al. Hot deformation behavior of Ti-5553 alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 852
60 周 伟, 葛 鹏, 赵永庆等. Ti-5553合金的高温变形行为 [J]. 中国有色金属学报, 2010, 20: 852
61 Fan J K, Kou H C, Lai M J, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333 [J]. Rare Met. Mater. Eng., 2014, 43: 808
62 Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
62 赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
63 Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, A528: 8277
64 Rollett A, Rohrer G S, Humphreys J. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Oxford: Elsevier, 2017: 13
65 Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals [M]. Beijing: Metallurgical Industry Press, 1994: 197
65 毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 197
66 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. London: Elsevier Science Ltd, 2004: 11
67 Hua K, Zhang Y D, Gan W M, et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy [J]. Int. J. Plast., 2019, 119: 200
68 Philippart I, Rack H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al [J]. Mater. Sci. Eng., 1998, A243: 196
69 Srinivasan R. Yield points during the high temperature deformation of Ti-15V-3Al-3Cr-3Sn alloy [J]. Scr. Metall. Mater., 1992, 27: 925
70 Jing L, Fu R, Wang Y, et al. Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy [J]. Mater. Sci. Eng., 2017, A704: 434
71 Jonas J J, Aranas C, Fall A, et al. Transformation softening in three titanium alloys [J]. Mater. Des., 2017, 113: 305
72 Koike J, Shimoyama Y, Ohnuma I, et al. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy [J]. Acta Mater., 2000, 48: 2059
73 Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
74 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
75 Hua K, Zhang Y D, Gan W M, et al. Correlation between imposed deformation and transformation lattice strain on α variant selection in a metastable β-Ti alloy under isothermal compression [J]. Acta Mater., 2018, 161: 150
76 Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59: 4138
77 Stefansson N, Semiatin S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment [J]. Metall. Mater. Trans., 2003, 34A: 691
78 Hua K, Xue X Y, Kou H C, et al. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553 [J]. J. Alloys Compd., 2014, 615: 531
79 Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800℃ [J]. J. Mater. Sci., 2013, 48: 1100
80 Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40(3): 25
80 樊江昆, 赖敏杰, 唐 斌等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40(3): 25
81 Aranas C, Foul A, Guo B Q, et al. Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium [J]. Scr. Mater., 2017, 133: 83
82 Guo B Q, Jonas J J. Dynamic transformation during the high temperature deformation of titanium alloys [J]. J. Alloys Compd., 2021, 884: 161179
83 Fan J K, Li J S, Zhang Y D, et al. Microstructure and crystallography of α phase nucleated dynamically during thermo-mechanical treatments in metastable β titanium alloy [J]. Adv. Eng. Mater., 2017, 19: 1600859
84 Dehghan-Manshadi A, Dippenaar R J. Strain-induced phase transformation during thermo-mechanical processing of titanium alloys [J]. Mater. Sci. Eng., 2012, A552: 451
85 Fan J K, Li J S, Zhang Y D, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature [J]. Mater. Charact., 2017, 130: 149
86 Fan J K, Zhang Z X, Gao P Y, et al. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38: 135
87 Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1: 561
88 Klimova M, Zherebtsov S, Salishchev G, et al. Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Mater. Sci. Eng., 2015, A645: 292
89 Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
90 Shi R, Dixit V, Viswanathan G B, et al. Experimental assessment of variant selection rules for grain boundary α in titanium alloys [J]. Acta Mater., 2016, 102: 197
91 Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
92 Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
93 Furuhara T, Maki Y. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation [J]. Mater. Sci. Eng., 2001, A312: 145
94 Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys [J]. Acta Mater., 2006, 54: 4261
95 Furuhara T, Takagi S, Watanabe H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy [J]. Metall. Mater. Trans., 1996, 27A: 1635
96 Li K. Interaction between deformation and phase transformation and texture control during hot processing in titanium alloys [D]. Beijing: University of Science and Technology Beijing, 2018
96 李 凯. 钛合金热变形过程中形变与相变的交互作用及织构控制 [D]. 北京: 北京科技大学, 2018
97 Liu B, Li Y P, Matsumoto H, et al. Enhanced grain refinement through deformation induced α precipitation in hot working of α + β titanium alloy [J]. Adv. Eng. Mater., 2012, 14: 785
98 Fan J K. α phase precipitation mechanism during thermo-mechanical processing of Ti-5Al-5Mo-5V-3Cr alloy [D]. Xi'an: Northwestern Polytechnical University, 2017
98 樊江昆. Ti-5Al-5Mo-5V-3Cr合金热力耦合作用下α相析出机制研究 [D]. 西安: 西北工业大学, 2017
99 Fan J K, Kou H C, Zhang Y D, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process [J]. J. Alloys Compd., 2019, 770: 183
100 Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
101 Ghosh C. The dynamic transformation of deformed austenite at temperatures above the Ae3 [D]. Montreal, Canada: McGill University, 2013
102 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
102 宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
103 Zhan M, Lei Y D, Zheng Z B. Status and development tendency of integrated computational materials engineering in precision plastic forming [J]. China Mech. Eng., 2020, 31: 2663
103 詹 梅, 雷煜东, 郑泽邦. 集成计算材料工程在精确塑性成形中的应用现状与发展趋势 [J]. 中国机械工程, 2020, 31: 2663
104 Luo J, Wu B, Li M Q. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models [J]. Int. J. Miner. Metall. Mater., 2012, 19: 122
105 Matsumoto H, Naito D, Miyoshi K, et al. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α + β) starting microstructure [J]. Sci. Technol. Adv. Mater., 2017, 18: 893
106 Wang W Y, Tang B, Lin D Y, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks [J]. J. Mater. Res., 2020, 35: 872
107 Hoar E, Sahoo S, Mahdavi M, et al. Statistical modeling of microstructure evolution in a Ti-6Al-4V alloy during isothermal compression [J]. Acta Mater., 2021, 210: 116827
108 Levitas V I, Roy A M. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases [J]. Acta Mater., 2016, 105: 244
109 Yeddu H K, Lookman T, Saxena A. Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study [J]. Acta Mater., 2013, 61: 6972
110 Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
111 Yu P F, Wu C S, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates [J]. Acta Mater., 2021, 207: 116692
112 Zhang T L, Wang D, Wang Y Z. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys [J]. Acta Mater., 2020, 196: 409
113 Li H W, Sun X X, Yang H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys [J]. Int. J. Plast., 2016, 87: 154
114 Zhang J, Li H W, Sun X X, et al. A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. Int. J. Plast., 2020, 135: 102804
115 Chen L, Chen J, Lebensohn R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Comput. Methods. Appl. Mech. Eng., 2015, 285: 829
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.