| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 高强韧钛合金组成相成分和形态的精细调控 | 
  					 
  					  										
						杨锐( ), 马英杰, 雷家峰, 胡青苗, 黄森森 | 
					 
															
					| 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 | 
					 
										
						 | 
					 
   										
    					| Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure | 
  					 
  					  					  					
						YANG Rui( ), MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen | 
					 
															
						| Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China | 
					   
									 
				
				引用本文: 
				
								杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.	
																												 																				Rui YANG,
																								Yingjie MA,
																								Jiafeng LEI,
																								Qingmiao HU,
																												Sensen HUANG. 
				Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. Acta Metall Sin, 2021, 57(11): 1455-1470.	                                                        				  
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | 
																 
															     Wang L, Zheng Z, Phukan H, et al. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy [J]. Acta Mater., 2017, 132: 598
															     																 | 
																	  
																																
																| 2 | 
																 
															     Lin P, Hao Y G, Zhang B Y, et al. Tension-compression asymmetry in yielding and strain hardening behavior of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2017, A707: 172
															     																 | 
																	  
																																
																| 3 | 
																 
															     Mine Y, Matsuzaki Y, Takashima K. Anisotropy of strength and plasticity in single-colony lamellar structure of Ti-6Al-4V alloy [J]. Scr. Mater., 2020, 177: 223
															     																 | 
																	  
																																
																| 4 | 
																 
															     Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
															     																 | 
																	  
																																
																| 5 | 
																 
															     Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
															     																 | 
																	  
																																
																| 6 | 
																 
															     Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
															     																 | 
																	  
																																
																| 7 | 
																 
															     Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations [J]. J. Alloys Compd., 2021, 850: 156314
															     																 | 
																	  
																																
																| 8 | 
																 
															     Vitos L. Total-energy method based on the exact Muffin-Tin orbitals theory [J]. Phys. Rev., 2001, 64B: 014107
															     																 | 
																	  
																																
																| 9 | 
																 
															     Vitos L. Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications [M]. London: Springer, 2007: 13
															     																 | 
																	  
																																
																| 10 | 
																 
															     Wu S Q. ω phase and its behavior in Ti-Nb-Pd alloys [D]. Beijing: The University of Chinese Academy of Sciences, 2013
															     																 | 
																	  
																																
																| 10 | 
																 
															     吴松全. Ti-Nb-Pd合金中ω相及其微观行为 [D]. 北京: 中国科学院大学, 2013
															     																 | 
																	  
																																
																| 11 | 
																 
															     Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
															     																 | 
																	  
																																
																| 12 | 
																 
															     Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr 20 Nb alloy [J]. Acta Mater., 2004, 52: 5243
															     																 | 
																	  
																																
																| 13 | 
																 
															     Xue Q. Effects of β phase stability on microstructure evolution, mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy [D]. Shenyang: Northeastern University, 2017
															     																 | 
																	  
																																
																| 13 | 
																 
															     薛 琦. β相稳定性对双相Ti-3Al-5Mo-4.5V合金显微组织、力学性能及变形机制影响的研究 [D]. 沈阳: 东北大学, 2017
															     																 | 
																	  
																																
																| 14 | 
																 
															     Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater., 2016, 106: 162
															     																 | 
																	  
																																
																| 15 | 
																 
															     Hsiung L M, Lassila D H. Shock-induced omega phase in tantalum [J]. Scr. Mater., 1998, 38: 1371
															     																 | 
																	  
																																
																| 16 | 
																 
															     Coakley J, Vorontsov V A, Jones N G, et al. Precipitation processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr [J]. J. Alloys Compd., 2015, 646: 946
															     																 | 
																	  
																																
																| 17 | 
																 
															     Zheng Y F, Choudhuri D, Alam T, et al. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy [J]. Scr. Mater., 2016, 123: 81
															     																 | 
																	  
																																
																| 18 | 
																 
															     Chen W, Zhang J Y, Cao S, et al. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: Precipitates shearing vs precipitates disordering [J]. Acta Mater., 2016, 117: 68
															     																 | 
																	  
																																
																| 19 | 
																 
															     Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
															     																 | 
																	  
																																
																| 20 | 
																 
															     Lai M J, Tasan C C, Raabe D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation [J]. Acta Mater., 2015, 100: 290
															     																 | 
																	  
																																
																| 21 | 
																 
															     Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
															     																 | 
																	  
																																
																| 22 | 
																 
															     Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
															     																 | 
																	  
																																
																| 23 | 
																 
															     Hu Q M, Vitos L, Yang R. Theoretical investigation of the ω-related phases in TiAl-Nb/Mo alloys [J]. Phys. Rev., 2014, 90B: 054109
															     																 | 
																	  
																																
																| 24 | 
																 
															     Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems [J]. Scr. Mater., 2016, 125: 34
															     																 | 
																	  
																																
																| 25 | 
																 
															     Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ: The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: A375
															     																 | 
																	  
																																
																| 25 | 
																 
															     李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ: Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: A375
															     																 | 
																	  
																																
																| 26 | 
																 
															     Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ: The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: A384
															     																 | 
																	  
																																
																| 26 | 
																 
															     李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ: 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: A384
															     																 | 
																	  
																																
																| 27 | 
																 
															     Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ: The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: A391
															     																 | 
																	  
																																
																| 27 | 
																 
															     李 东, 万晓景. 钛合金热稳定性研究Ⅲ: 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: A391
															     																 | 
																	  
																																
																| 28 | 
																 
															     Zhang J, Li D. Precipitation of α2 phase in α + β solution-treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd alloys [J]. J. Mater. Sci. Technol., 2001, 17: 315
															     																 | 
																	  
																																
																| 29 | 
																 
															     Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, A341: 229
															     																 | 
																	  
																																
																| 30 | 
																 
															     Zhang X D, Wiezorek J M K, Baeslack W A, et al. Precipitation of ordered α2 phase in Ti-6-22-22 alloy [J]. Acta Mater., 1998, 46: 4485
															     																 | 
																	  
																																
																| 31 | 
																 
															     Zhang R P, Zhao S T, Ophus C, et al. Direct imaging of short-range order and its impact on deformation in Ti-6Al [J]. Sci. Adv., 2019, 5: eaax2799
															     																 | 
																	  
																																
																| 32 | 
																 
															     Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
															     																 | 
																	  
																																
																| 33 | 
																 
															     Radecka A, Coakley J, Vorontsov V A, et al. Precipitation of the ordered α2 phase in a near-α titanium alloy [J]. Scr. Mater., 2016, 117: 81
															     																 | 
																	  
																																
																| 34 | 
																 
															     Lunt D, Xu X, Busolo T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy [J]. Scr. Mater., 2018, 145: 45
															     																 | 
																	  
																																
																| 35 | 
																 
															     Fitzner A, Prakash D G L, Da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
															     																 | 
																	  
																																
																| 36 | 
																 
															     Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
															     																 | 
																	  
																																
																| 37 | 
																 
															     Castany P, Pettinari-Sturmel F, Douin J, et al. TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2017, A680: 85
															     																 | 
																	  
																																
																| 38 | 
																 
															     Youssef S S, Zheng X D, Qi M, et al. Effects of Al content and α2 precipitation on the fatigue crack growth behaviors of binary Ti-Al alloys [J]. Mater. Sci. Eng., 2021, A819: 141513
															     																 | 
																	  
																																
																| 39 | 
																 
															     Youssef S S, Zheng X D, Ma Y J, et al. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al binary alloys: A comparative investigation [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 710
															     																 | 
																	  
																																
																| 40 | 
																 
															     Youssef S S, Zheng X D, Huang S S, et al. Precipitation behavior of α2 phase and its influence on mechanical properties of binary Ti-8Al alloy [J]. J. Alloys Compd., 2021, 871: 159577
															     																 | 
																	  
																																
																| 41 | 
																 
															     Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782
															     																 | 
																	  
																																
																| 42 | 
																 
															     Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
															     																 | 
																	  
																																
																| 43 | 
																 
															     Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
															     																 | 
																	  
																																
																| 44 | 
																 
															     Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
															     																 | 
																	  
																																
																| 45 | 
																 
															     Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
															     																 | 
																	  
																																
																| 45 | 
																 
															     黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
															     																 | 
																	  
																																
																| 46 | 
																 
															     Yu Q, Jiang Y Y, Wang J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the [101¯0] direction [J]. Scr. Mater., 2015, 96: 41
															     																 | 
																	  
																																
																| 47 | 
																 
															     Liao X Z, Wang J, Nie J F, et al. Deformation twinning in hexagonal materials [J]. MRS Bull., 2016, 41: 314
															     																 | 
																	  
																																
																| 48 | 
																 
															     Wang J, Zhang X H. Twinning effects on strength and plasticity of metallic materials [J]. MRS Bull., 2016, 41: 274
															     																 | 
																	  
																																
																| 49 | 
																 
															     Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014, A612: 431
															     																 | 
																	  
																																
																| 50 | 
																 
															     El Kadiri H, Barrett C D, Wang J, et al. Why are {101¯2} twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
															     																 | 
																	  
																																
																| 51 | 
																 
															     Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
															     																 | 
																	  
																																
																| 52 | 
																 
															     Zheng X D, Zheng S J, Wang J, et al. Twinning and sequential kinking in lamellar Ti-6Al-4V alloy [J]. Acta Mater., 2019, 181: 479
															     																 | 
																	  
																																
																| 53 | 
																 
															     Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅰ. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
															     																 | 
																	  
																																
																| 54 | 
																 
															     Lani F, Furnémont Q, van Rompaey T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅱ. Micromechanical modelling [J]. Acta Mater., 2007, 55: 3695
															     																 | 
																	  
																																
																| 55 | 
																 
															     Yang Y, Castany P, Cornen M, et al. Characterization of the martensitic transformation in the superelastic Ti-24Nb-4Zr-8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis [J]. Acta Mater., 2015, 88: 25
															     																 | 
																	  
																																
																| 56 | 
																 
															     Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
															     																 | 
																	  
																																
																| 57 | 
																 
															     Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
															     																 | 
																	  
																																
																| 58 | 
																 
															     Zhang J Y, Qian B N, Wu Y J, et al. A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys [J]. Mater. Sci. Technol., 2021, 74: 21
															     																 | 
																	  
																																
																| 59 | 
																 
															     Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
															     																 | 
																	  
																																
																| 60 | 
																 
															     Nalla R K, Ritchie R O, Boyce B L, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures [J]. Metall. Mater. Trans., 2002, 33A: 899
															     																 | 
																	  
																																
																| 61 | 
																 
															     Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a Widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
															     																 | 
																	  
																																
																| 62 | 
																 
															     Yoder G R, Cooley L A, Crooker T W. Enhancement of fatigue crack growth and fracture resistance in Ti-6Al-4V and Ti-6Al-6V-2Sn through microstructural modification [J]. J. Eng. Mater. Technol., 1977, 99: 313
															     																 | 
																	  
																																
																| 63 | 
																 
															     Feng X, Qiu J K, Ma Y J, et al. Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti-6Al-4V casting [J]. J. Mater. Sci. Technol., 2016, 32: 362
															     																 | 
																	  
																																
																| 64 | 
																 
															     Ma Y J, Liu J R, Lei J F, et al. The turning point in Paris region of fatigue crack growth rate in titanium alloy [J]. Acta Metall. Sin., 2008, 44: 973
															     																 | 
																	  
																																
																| 64 | 
																 
															     马英杰, 刘建荣, 雷家峰等. 钛合金疲劳裂纹扩展速率Paris区中的转折点 [J]. 金属学报, 2008, 44: 973
															     																 | 
																	  
																																
																| 65 | 
																 
															     Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086
															     																 | 
																	  
																																
																| 65 | 
																 
															     马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086
															     																 | 
																	  
																																
																| 66 | 
																 
															     Ma Y J, Wang D C, Wang H W, et al. Factors influencing fracture toughness of TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2010, 20: S414
															     																 | 
																	  
																																
																| 66 | 
																 
															     马英杰, 王鼎春, 王红武等. 影响TC4ELI合金断裂韧性的因素 [J]. 中国有色金属学报, 2010, 20: S414
															     																 | 
																	  
																																
																| 67 | 
																 
															     Hammouda M M I, Sallam H E M, Osman H G. Significance of crack tip plasticity to early notch fatigue crack growth [J]. Int. J. Fatigue, 2004, 26: 173
															     																 | 
																	  
																																
																| 68 | 
																 
															     Toyosada M, Gotoh K, Niwa T. Fatigue crack propagation for a through thickness crack: A crack propagation law considering cyclic plasticity near the crack tip [J]. Int. J. Fatigue, 2004, 26: 983
															     																 | 
																	  
																																
																| 69 | 
																 
															     Toribio J, Kharin V. Large crack tip deformations and plastic crack advance during fatigue [J]. Mater. Lett., 2007, 61: 964
															     																 | 
																	  
																																
																| 70 | 
																 
															     Xiong Y, Hu X X, Katsuta J, et al. Influence of compressive plastic zone at the crack tip upon fatigue crack propagation [J]. Int. J. Fatigue, 2008, 30: 67
															     																 | 
																	  
																																
																| 71 | 
																 
															     Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
															     																 | 
																	  
																																
																| 72 | 
																 
															     Ma Y J, Liu J R, Lei J F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22: 555
															     																 | 
																	  
																																
																| 72 | 
																 
															     马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22: 555
															     																 | 
																	  
																																
																| 73 | 
																 
															     Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater Des., 2015, 83: 499
															     																 | 
																	  
																																
																| 74 | 
																 
															     Li C L, Zou L N, Fu Y Y, et al. Effect of heat treatments on microstructure and property of a high strength/toughness Ti-8V-1.5Mo-2Fe-3Al alloy [J]. Mater. Sci. Eng., 2014, A616: 207
															     																 | 
																	  
																																
																| 75 | 
																 
															     Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
															     																 | 
																	  
																																
																| 76 | 
																 
															     Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
															     																 | 
																	  
																																
																| 77 | 
																 
															     Zhang Q, Guo D F, Zhang G S, et al. An extraordinary enhancement of wear resistance in a multi-modal-laminated alloy [J]. Mater Des., 2016, 91: 53
															     																 | 
																	  
																																
																| 78 | 
																 
															     Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. J. Alloys Compd., 2017, 693: 582
															     																 | 
																	  
																																
																| 79 | 
																 
															     Wang H, Zhao Q Y, Xin S W, et al. Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy [J]. Mater. Sci. Eng., 2021, A821: 141626
															     																 | 
																	  
																																
																| 80 | 
																 
															     Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
															     																 | 
																	  
																																
																| 81 | 
																 
															     Dong R F, Li J S, Kou H C, et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44: 24
															     																 | 
																	  
																																
																| 82 | 
																 
															     Song B, Xiao W L, Fu Y, et al. Role of nanosized intermediate phases on α precipitation in a high-strength near β titanium alloy [J]. Mater. Lett., 2020, 275: 128147
															     																 | 
																	  
																																
																| 83 | 
																 
															     Zhu W G, Lei J, Tan C S, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility [J]. Mater. Des., 2019, 168: 107640
															     																 | 
																	  
																																
																| 84 | 
																 
															     Zhu W G, Lei J, Su B, et al. The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V [J]. Mater. Sci. Eng., 2020, A782: 139248
															     																 | 
																	  
																																
																| 85 | 
																 
															     Cann J L, De Luca A, Dunand D C, et al. Sustainability through alloy design: Challenges and opportunities [J]. Prog. Mater. Sci., 2021, 117: 100722
															     																 | 
																	  
																																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |