|
|
高强亚稳β钛合金变形机制及其组织调控方法 |
李金山1,2( ), 唐斌1,2, 樊江昆1,2( ), 王川云1, 花珂1, 张梦琪1, 戴锦华1, 寇宏超1,2 |
1.西北工业大学 凝固技术国家重点实验室 西安 710072 2.西北工业大学 重庆科创中心 重庆 401135 |
|
Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy |
LI Jinshan1,2( ), TANG Bin1,2, FAN Jiangkun1,2( ), WANG Chuanyun1, HUA Ke1, ZHANG Mengqi1, DAI Jinhua1, KOU Hongchao1,2 |
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2.Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China |
引用本文:
李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
Jinshan LI,
Bin TANG,
Jiangkun FAN,
Chuanyun WANG,
Ke HUA,
Mengqi ZHANG,
Jinhua DAI,
Hongchao KOU.
Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. Acta Metall Sin, 2021, 57(11): 1438-1454.
1 |
Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys [J]. J. Aeronaut. Mater., 2020, 40(3): 63
|
1 |
陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势 [J]. 航空材料学报, 2020, 40(3): 63
|
2 |
Yang D Y, Fu Y Y, Hui S X, et al. Research and application of high strength and high toughness titanium alloys [J]. Chin. J. Rare Met., 2011, 35: 575
|
2 |
杨冬雨, 付艳艳, 惠松骁等. 高强高韧钛合金研究与应用进展 [J]. 稀有金属, 2011, 35: 575
|
3 |
Yang J. Application of titanium alloy in aircraft [J]. Aeronaut. Manuf. Technol., 2006, (11): 41
|
3 |
杨 健. 钛合金在飞机上的应用 [J]. 航空制造技术, 2006, (11): 41
|
4 |
Cao C X. Applications of titanium alloys on large transporter [J]. Rare Met. Lett., 2006, 25(1): 17
|
4 |
曹春晓. 钛合金在大型运输机上的应用 [J]. 稀有金属快报, 2006, 25(1): 17
|
5 |
Han D, Zhang P S, Mao X N, et al. Research progress of BT22 titanium alloy and its large forgings [J]. Mater. Rep., 2010, 24(3): 46
|
5 |
韩 栋, 张鹏省, 毛小南等. BT22钛合金及其大型锻件的研究进展 [J]. 材料导报, 2010, 24(3): 46
|
6 |
Boyer R R, Briggs R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
|
7 |
Zhao Y Q, Ge P, Xin S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Mater. China, 2020, 39: 527
|
7 |
赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39: 527
|
8 |
Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 [J]. Mater. Des., 2013, 49: 945
|
9 |
Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
|
10 |
Wang H, Zhao Y Q, Xin S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. J. Aeronaut. Mater., 2018, 38(4): 56
|
10 |
王 欢, 赵永庆, 辛社伟等. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56
|
11 |
Salvador C A F, Opini V C, Mello M G, et al. Effects of double-aging heat-treatments on the microstructure and mechanical behavior of an Nb-modified Ti-5553 alloy [J]. Mater. Sci. Eng., 2019, A743: 716
|
12 |
Gao J H, Huang Y H, Guan D K, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate [J]. Acta Mater., 2018, 152: 301
|
13 |
Zhang J Y, Sun F, Chen Z, et al. Strong and ductile beta Ti-18Zr-13Mo alloy with multimodal twinning [J]. Mater. Res. Lett., 2019, 7: 251
|
14 |
Wang C, Li N, Cui Y, et al. Effect of solutes on the rate sensitivity in Ti-xAl-yMo-zV and Ti-xAl-yMo-zCr β-Ti alloys [J]. Scr. Mater., 2018, 149: 129
|
15 |
Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects [J]. Scr. Mater., 2012, 66: 749
|
16 |
Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
|
17 |
Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095
|
18 |
Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy [J]. Acta Mater., 2015, 84: 124
|
19 |
Fu Y, Xiao W L, Kent D, et al. Ultrahigh strain hardening in a transformation-induced plasticity and twinning-induced plasticity titanium alloy [J]. Scr. Mater., 2020, 187: 285
|
20 |
Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
|
21 |
Gröger R, Vitek V. Directional versus central-force bonding in studies of the structure and glide of 1/2<111> screw dislocations in bcc transition metals [J]. Philos. Mag., 2009, 89: 3163
|
22 |
Castany P, Besse M, Gloriant T. In situ TEM study of dislocation slip in a metastable β titanium alloy [J]. Scr. Mater., 2012, 66: 371
|
23 |
Vitek V. Core structure of screw dislocations in body-centered cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
|
24 |
Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
|
25 |
Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
|
26 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
27 |
Wang C Y, Yang L W, Cui Y W, et al. High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys [J]. Mater. Des., 2018, 137: 371
|
28 |
Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
|
29 |
Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 165
|
30 |
Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scr. Mater., 2018, 154: 139
|
31 |
Wang C, Monclús M A, Yang L, et al. Effect of nanoscale α precipitation on slip activity in ultrastrong beta titanium alloys [J]. Mater. Lett., 2020, 264: 127398
|
32 |
Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy [J]. Acta Mater., 1999, 47: 1019
|
33 |
Kwasniak P, Clouet E. Influence of simple metals on the stability of <a> basal screw dislocations in hexagonal titanium alloys [J]. Acta Mater., 2019, 180: 42
|
34 |
Caillard D, Gaumé M, Onimus F. Glide and cross-slip of a-dislocations in Zr and Ti [J]. Acta Mater., 2018, 155: 23
|
35 |
Wang C Y, Zhang N, Kou H C, et al. A micro-nano mechanical investigation on the influnce of α phase on mobile dislocations in metastable β titanium alloy [R]. Xiamen: Chinese Materials Conference, 2021
|
35 |
王川云, 张 宁, 寇宏超等. 亚稳β钛合金中α相对位错运动影响规律的微纳力学研究 [R]. 厦门: 中国材料大会, 2021
|
36 |
Balachandran S, Kashiwar A, Choudhury A, et al. On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy [J]. Acta Mater., 2016, 106: 374
|
37 |
Kou W J, Sun Q Y, Xiao L, et al. Superior plasticity stability and excellent strength in Ti-55531 alloy micropillars via harmony slip in nanoscale α/β phases [J]. Sci. Rep., 2019, 9: 5075
|
38 |
Eyckens P, Mulder H, Gawad J, et al. The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling [J]. Int. J. Plast., 2015, 73: 119
|
39 |
Fujita N, Ishikawa N, Roters F, et al. Experimental-numerical study on strain and stress partitioning in bainitic steels with martensite-austenite constituents [J]. Int. J. Plast., 2018, 104: 39
|
40 |
Khan A S, Liu J. A deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals [J]. Int. J. Plast., 2016, 86: 56
|
41 |
Kestens L A I, Pirgazi H. Texture formation in metal alloys with cubic crystal structures [J]. Mater. Sci. Technol., 2016, 32: 1303
|
42 |
Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O [J]. Int. J. Plast., 2015, 75: 226
|
43 |
Tasan C C, Hoefnagels J P M, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations [J]. Int. J. Plast., 2014, 63: 198
|
44 |
Khan A S, Suh Y S, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. Int. J. Plast., 2004, 20: 2233
|
45 |
Khan A S, Kazmi R, Farrokh B, et al. Effect of oxygen content and microstructure on the thermo-mechanical response of three Ti-6Al-4V alloys: Experiments and modeling over a wide range of strain-rates and temperatures [J]. Int. J. Plast., 2007, 23: 1105
|
46 |
Liu J, Khan A S, Takacs L, et al. Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: Experiments, modeling and simulation [J]. Int. J. Plast., 2015, 64: 151
|
47 |
Mandal S, Gockel B T, Balachandran S, et al. Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model [J]. Int. J. Plast., 2017, 94: 57
|
48 |
Meredith C S, Khan A S. Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing [J]. Int. J. Plast., 2012, 30-31: 202
|
49 |
Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
|
50 |
Sidor J J, Decroos K, Petrov R H, et al. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: Experimental study and modeling [J]. Int. J. Plast., 2015, 66: 119
|
51 |
Sun Z C, Wu H L, Cao J, et al. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method [J]. Int. J. Plast., 2018, 106: 73
|
52 |
Wang J, Moumni Z, Zhang W H. A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys [J]. Int. J. Plast., 2017, 97: 194
|
53 |
Xiao Y, Zeng P, Lei L P. Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy [J]. Int. J. Plast., 2018, 107: 164
|
54 |
Hall A. Primary processing of beta and near beta titanium alloys [A]. Beta Titanium Alloys in the 1980's [C]. Metallurgical Society of AIME, 1984: 129
|
55 |
Bourell D L, McQueen H J. Thermomechanical processing of iron, titanium, and zirconium alloys in the bcc structure [J]. J. Mater. Shaping Technol., 1987, 5: 53
|
56 |
Bao J X, Lv S D, Zhang M W, et al. Multi-scale coupling effects on flow localization during micro-compression deformation of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2020, A793: 139888
|
57 |
Hua K, Xue X Y, Kou H C, et al. High temperature deformation behaviour of Ti-5Al-5Mo-5V-3Cr during thermomechanical processing [J]. Mater. Res. Innovations, 2014, 18(suppl.4): S4-202
|
58 |
Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
|
59 |
Zhao Y L, Li B L, Zhu Z S, et al. The high temperature deformation behavior and microstructure of TC21 titanium alloy [J]. Mater. Sci. Eng., 2010, A527: 5360
|
60 |
Zhou W, Ge P, Zhao Y Q, et al. Hot deformation behavior of Ti-5553 alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 852
|
60 |
周 伟, 葛 鹏, 赵永庆等. Ti-5553合金的高温变形行为 [J]. 中国有色金属学报, 2010, 20: 852
|
61 |
Fan J K, Kou H C, Lai M J, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333 [J]. Rare Met. Mater. Eng., 2014, 43: 808
|
62 |
Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
|
62 |
赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
|
63 |
Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr [J]. Mater. Sci. Eng., 2011, A528: 8277
|
64 |
Rollett A, Rohrer G S, Humphreys J. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Oxford: Elsevier, 2017: 13
|
65 |
Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals [M]. Beijing: Metallurgical Industry Press, 1994: 197
|
65 |
毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 197
|
66 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. London: Elsevier Science Ltd, 2004: 11
|
67 |
Hua K, Zhang Y D, Gan W M, et al. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy [J]. Int. J. Plast., 2019, 119: 200
|
68 |
Philippart I, Rack H J. High temperature dynamic yielding in metastable Ti-6.8Mo-4.5F-1.5Al [J]. Mater. Sci. Eng., 1998, A243: 196
|
69 |
Srinivasan R. Yield points during the high temperature deformation of Ti-15V-3Al-3Cr-3Sn alloy [J]. Scr. Metall. Mater., 1992, 27: 925
|
70 |
Jing L, Fu R, Wang Y, et al. Discontinuous yielding behavior and microstructure evolution during hot deformation of TC11 alloy [J]. Mater. Sci. Eng., 2017, A704: 434
|
71 |
Jonas J J, Aranas C, Fall A, et al. Transformation softening in three titanium alloys [J]. Mater. Des., 2017, 113: 305
|
72 |
Koike J, Shimoyama Y, Ohnuma I, et al. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy [J]. Acta Mater., 2000, 48: 2059
|
73 |
Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
|
74 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
|
75 |
Hua K, Zhang Y D, Gan W M, et al. Correlation between imposed deformation and transformation lattice strain on α variant selection in a metastable β-Ti alloy under isothermal compression [J]. Acta Mater., 2018, 161: 150
|
76 |
Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59: 4138
|
77 |
Stefansson N, Semiatin S L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment [J]. Metall. Mater. Trans., 2003, 34A: 691
|
78 |
Hua K, Xue X Y, Kou H C, et al. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553 [J]. J. Alloys Compd., 2014, 615: 531
|
79 |
Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800℃ [J]. J. Mater. Sci., 2013, 48: 1100
|
80 |
Fan J K, Lai M J, Tang B, et al. Research progress of dynamic phase transformation behavior of titanium alloy under thermo-mechanical coupling process [J]. J. Aeronaut. Mater., 2020, 40(3): 25
|
80 |
樊江昆, 赖敏杰, 唐 斌等. 热力耦合作用下钛合金动态相变行为研究进展 [J]. 航空材料学报, 2020, 40(3): 25
|
81 |
Aranas C, Foul A, Guo B Q, et al. Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium [J]. Scr. Mater., 2017, 133: 83
|
82 |
Guo B Q, Jonas J J. Dynamic transformation during the high temperature deformation of titanium alloys [J]. J. Alloys Compd., 2021, 884: 161179
|
83 |
Fan J K, Li J S, Zhang Y D, et al. Microstructure and crystallography of α phase nucleated dynamically during thermo-mechanical treatments in metastable β titanium alloy [J]. Adv. Eng. Mater., 2017, 19: 1600859
|
84 |
Dehghan-Manshadi A, Dippenaar R J. Strain-induced phase transformation during thermo-mechanical processing of titanium alloys [J]. Mater. Sci. Eng., 2012, A552: 451
|
85 |
Fan J K, Li J S, Zhang Y D, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature [J]. Mater. Charact., 2017, 130: 149
|
86 |
Fan J K, Zhang Z X, Gao P Y, et al. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38: 135
|
87 |
Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1: 561
|
88 |
Klimova M, Zherebtsov S, Salishchev G, et al. Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti-5Al-5Mo-5V-1Cr-1Fe [J]. Mater. Sci. Eng., 2015, A645: 292
|
89 |
Shi R, Dixit V, Fraser H L, et al. Variant selection of grain boundary α by special prior β grain boundaries in titanium alloys [J]. Acta Mater., 2014, 75: 156
|
90 |
Shi R, Dixit V, Viswanathan G B, et al. Experimental assessment of variant selection rules for grain boundary α in titanium alloys [J]. Acta Mater., 2016, 102: 197
|
91 |
Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
|
92 |
Salib M, Teixeira J, Germain L, et al. Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy [J]. Acta Mater., 2013, 61: 3758
|
93 |
Furuhara T, Maki Y. Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation [J]. Mater. Sci. Eng., 2001, A312: 145
|
94 |
Teixeira J D C, Appolaire B, Aeby-Gautier E, et al. Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys [J]. Acta Mater., 2006, 54: 4261
|
95 |
Furuhara T, Takagi S, Watanabe H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy [J]. Metall. Mater. Trans., 1996, 27A: 1635
|
96 |
Li K. Interaction between deformation and phase transformation and texture control during hot processing in titanium alloys [D]. Beijing: University of Science and Technology Beijing, 2018
|
96 |
李 凯. 钛合金热变形过程中形变与相变的交互作用及织构控制 [D]. 北京: 北京科技大学, 2018
|
97 |
Liu B, Li Y P, Matsumoto H, et al. Enhanced grain refinement through deformation induced α precipitation in hot working of α + β titanium alloy [J]. Adv. Eng. Mater., 2012, 14: 785
|
98 |
Fan J K. α phase precipitation mechanism during thermo-mechanical processing of Ti-5Al-5Mo-5V-3Cr alloy [D]. Xi'an: Northwestern Polytechnical University, 2017
|
98 |
樊江昆. Ti-5Al-5Mo-5V-3Cr合金热力耦合作用下α相析出机制研究 [D]. 西安: 西北工业大学, 2017
|
99 |
Fan J K, Kou H C, Zhang Y D, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process [J]. J. Alloys Compd., 2019, 770: 183
|
100 |
Ghosh C, Aranas C, Jonas J J. Dynamic transformation of deformed austenite at temperatures above the Ae3 [J]. Prog. Mater. Sci., 2016, 82: 151
|
101 |
Ghosh C. The dynamic transformation of deformed austenite at temperatures above the Ae3 [D]. Montreal, Canada: McGill University, 2013
|
102 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
102 |
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
103 |
Zhan M, Lei Y D, Zheng Z B. Status and development tendency of integrated computational materials engineering in precision plastic forming [J]. China Mech. Eng., 2020, 31: 2663
|
103 |
詹 梅, 雷煜东, 郑泽邦. 集成计算材料工程在精确塑性成形中的应用现状与发展趋势 [J]. 中国机械工程, 2020, 31: 2663
|
104 |
Luo J, Wu B, Li M Q. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models [J]. Int. J. Miner. Metall. Mater., 2012, 19: 122
|
105 |
Matsumoto H, Naito D, Miyoshi K, et al. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α + β) starting microstructure [J]. Sci. Technol. Adv. Mater., 2017, 18: 893
|
106 |
Wang W Y, Tang B, Lin D Y, et al. A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks [J]. J. Mater. Res., 2020, 35: 872
|
107 |
Hoar E, Sahoo S, Mahdavi M, et al. Statistical modeling of microstructure evolution in a Ti-6Al-4V alloy during isothermal compression [J]. Acta Mater., 2021, 210: 116827
|
108 |
Levitas V I, Roy A M. Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases [J]. Acta Mater., 2016, 105: 244
|
109 |
Yeddu H K, Lookman T, Saxena A. Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study [J]. Acta Mater., 2013, 61: 6972
|
110 |
Zheng C W, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model [J]. Acta Mater., 2013, 61: 5504
|
111 |
Yu P F, Wu C S, Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates [J]. Acta Mater., 2021, 207: 116692
|
112 |
Zhang T L, Wang D, Wang Y Z. Novel transformation pathway and heterogeneous precipitate microstructure in Ti-alloys [J]. Acta Mater., 2020, 196: 409
|
113 |
Li H W, Sun X X, Yang H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys [J]. Int. J. Plast., 2016, 87: 154
|
114 |
Zhang J, Li H W, Sun X X, et al. A multi-scale MCCPFEM framework: Modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony [J]. Int. J. Plast., 2020, 135: 102804
|
115 |
Chen L, Chen J, Lebensohn R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Comput. Methods. Appl. Mech. Eng., 2015, 285: 829
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|