|
|
Al19.3Co15Cr15Ni50.7高熵合金的热变形行为 |
刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工( ) |
燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004 |
|
Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy |
LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong( ) |
State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China |
引用本文:
刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
Qingqi LIU,
Ye LU,
Yifei ZHANG,
Xiaofeng FAN,
Rui LI,
Xingshuo LIU,
Xue TONG,
Pengfei YU,
Gong LI.
Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. Acta Metall Sin, 2021, 57(10): 1299-1308.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Murty B S, Yeh J W, Ranganathan S, et al. Alloy design and phase selection rules in high-entropy alloys [A]. High-Entropy Alloys [M]. Amsterdam: Elsevier, 2019: 51
|
3 |
Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7: 43
|
4 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
|
5 |
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
|
6 |
Baker L, Wu M, Wang Z W. Eutectic/eutectoid multi-principle component alloys: A review [J]. Mater. Charact., 2019, 147: 545
|
7 |
Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability [J]. Scr. Mater., 2019, 165: 145
|
8 |
Liu D J, Yu P F, Li G, et al. High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system [J]. Mater. Sci. Eng., 2018, A724: 283
|
9 |
Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22: 361
|
10 |
Guo J T, Cui C Y, Chen Y X, et al. Microstructure, interface and mechanical property of the DS NiAl/Cr(Mo, Hf) composite [J]. Intermetallics, 2001, 9: 287
|
11 |
Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
|
12 |
Aghaie-Khafri M, Golarzi N. Dynamic and metadynamic recrystallization of Hastelloy X superalloy [J]. J. Mater. Sci., 2008, 43: 3717
|
13 |
Lin P, Feng A H, Yuan S J, et al. Microstructure and texture evolution of a near-α titanium alloy during hot deformation [J]. Mater. Sci. Eng., 2013, A563: 16
|
14 |
Prasad Y V R K. Author's reply: Dynamic materials model: basis and principles [J]. Metall. Mater. Trans., 1996, 27A: 235
|
15 |
Wang L, Yang G, Lei T, et al. Hot deformation behavior of GH738 for A-USC turbine blades [J]. J. Iron Steel Res. Int., 2015, 22: 1043
|
16 |
Zhao M M, Qin S, Feng J, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel [J]. Acta Metall. Sin., 2020, 56: 960
|
16 |
赵嫚嫚, 秦 森, 冯 捷等. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响 [J]. 金属学报, 2020, 56: 960
|
17 |
Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation [J]. Forg. Stamp. Technol., 2018, 43(1): 176
|
17 |
肖艳红, 郭 成. 30Cr钢高温变形流变应力模型 [J]. 锻压技术, 2018, 43(1): 176
|
18 |
Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
|
19 |
Huang T Y. Materials Processing Technology [M]. Beijing: Tsinghua University Press, 2009: 20
|
19 |
黄天佑. 材料加工工艺 [M]. 北京: 清华大学出版社, 2009: 20
|
20 |
Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Comput. Mater. Sci., 2008, 42: 470
|
21 |
Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy [J]. J. Mater. Process. Technol., 2002, 125-126: 242
|
22 |
Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
|
23 |
Lin Y C, Wen D X, Deng J, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
|
24 |
Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys [J]. Mater. Sci. Eng., 2007, A447: 99
|
25 |
Wang Y, Lin D L, Law C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. J. Mater. Sci. Lett., 2000, 19: 1185
|
26 |
Lino R, Guadanini L G L, Silva L B, et al. Effect of Nb and Ti addition on activation energy for austenite hot deformation [J]. J. Mater. Res. Technol., 2019, 8: 180
|
27 |
Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
|
27 |
肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
|
28 |
Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Int. Mater. Rev., 1998, 43: 243
|
29 |
Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|