Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1299-1308    DOI: 10.11900/0412.1961.2020.00349
  研究论文 本期目录 | 过刊浏览 |
Al19.3Co15Cr15Ni50.7高熵合金的热变形行为
刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工()
燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy
LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong()
State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
引用本文:

刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
Qingqi LIU, Ye LU, Yifei ZHANG, Xiaofeng FAN, Rui LI, Xingshuo LIU, Xue TONG, Pengfei YU, Gong LI. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. Acta Metall Sin, 2021, 57(10): 1299-1308.

全文: PDF(2788 KB)   HTML
摘要: 

为研究铸态Al19.3Co15Cr15Ni50.7高熵合金的热变形行为,利用Gleeble-3500热模拟试验机对试样进行热压缩实验,获得了在应变速率为0.001~0.1 s-1和变形温度为973~1273 K条件下的真应力-真应变曲线。根据 Arrhenius模型构建该合金应变为0.1~0.7的流变应力下的本构方程,得出不同应变条件下的变形激活能和材料参数,以应变ε为自变量将材料常数进行6次多项式拟合,并对本构方程进行验证。基于动态材料模型的功率耗散理论和失稳判据构建功率耗散图和失稳图,并将2者叠加,得到应变为0.3~0.7的热加工图。结果表明,1273 K时的流变应力曲线呈现明显的动态回复的特征,其他温度下的流变应力曲线呈现动态再结晶的特征,并且流变应力随变形温度的下降或应变速率的提升而提升。建立本构方程并进行验证,判定系数R2 = 0.956,较高的判定系数表明建立的流变应力本构模型能够比较精确地预测合金的流变应力。高温压缩后的SEM结果显示:相比于铸态微观组织,合金经历热变形之后,组织中出现一些空隙与局部塑性流动,长条状的B2相发生了弯折、断裂,且断裂处的长条状B2相被撕裂成连续的片层状。最后基于动态材料模型(DMM)理论计算出热加工图,从而得到优异的热加工区间。

关键词 高熵合金本构方程热变形行为热压缩热加工图    
Abstract

Al19.3Co15Cr15Ni50.7 is a eutectic high entropy alloy with a lamellar structure and good high-temperature properties. To study the thermal deformation behavior of the samples (diameter 8 mm, height 10 mm), the samples were hot compressed using the Gleeble-3500 thermal simulation-testing machine. The true stress-true strain curves were obtained for strain rates between 0.001 and 0.1 s-1 and deformation temperatures from 973 K to 1273 K. According to the Arrhenius model, the constitutive equation of the alloy in the strain range of 0.1-0.7 is established, and the deformation activation energy and material parameters under different strain conditions were obtained. With the strain (ε) as the independent variable, the material constants are fitted using the sixth order polynomial, such that the material constant of a certain strain, and the constitutive equation of the strain is obtained. Finally, the constitutive equation is verified. Based on the power dissipation theory and instability criterion of the dynamic material model, the power dissipation and instability diagram are constructed, and the hot working diagram in the strain range of 0.3-0.7 for the Al19.3Co15Cr15Ni50.7 high entropy alloy is established by the superposition of the two diagrams. The results show that the flow stress curve at 1273 K presents dynamic recovery characteristics, while the flow stress curve at other temperatures presents dynamic recrystallization characteristics, and the flow stress increases with a decrease in the deformation temperature or an increase in the strain rate. The constitutive equation was established and verified, and the decision coefficient R2 = 0.956, which was relatively high, indicates that the established flow stress constitutive model could predict the flow stress of the alloy. After high-temperature compression, compared with the as-cast microstructure, the strip-shaped B2 phase has some bending after hot deformation, and even fracture may occur under the condition of a high-strain rate. The original fine lamellar B2 phase grows into coarse lamellar, and based on the dynamic material model (DMM) theory, the stable zone and unstable zone are determined, and the optimal process parameters are determined.

Key wordshigh entropy alloy    constitutive equation    thermal deformation behavior    thermal compression    hot working figure
收稿日期: 2020-09-07     
ZTFLH:  TG142.33  
基金资助:国家自然科学基金项目(11674274)
作者简介: 刘庆琦,男,1995年生,硕士生
图1  Al19.3Co15Cr15Ni50.7高熵合金的XRD谱
图2  铸态Al19.3Co15Cr15Ni50.7合金的BSE-SEM像
图3  不同变形条件下真应力-真应变曲线
s-1ε˙973 K1073 K1173 K1273 K
0.001676.4282.5126.149.3
0.01882.2466.9208.398.8
0.11110.0717.8338.9149.6
表1  Al19.3Co15Cr15Ni50.3高熵合金在不同变形温度下应变为0.3时的应力(σ) (MPa)
图4  σ和lnε˙的关系曲线
图5  lnσ和lnε˙的关系曲线
图6  lnε˙和ln[sinh(ασ)]的关系曲线
图7  ln[sinh(ασ)]和1/T之间的关系曲线
图8  lnZ和ln[sinh(ασ)]的关系曲线
εα / MPa-1nlnAQ / (kJ·mol-1)
0.10.002806.0349.95523.71
0.20.003044.1339.82427.14
0.30.003853.2238.77421.36
0.40.004792.9242.66462.11
0.50.005702.8947.03506.32
0.60.006203.1147.52511.17
0.70.006353.4449.05525.03
表2  不同应变时Al19.3Co15Cr15Ni50.7高熵合金的参数
iAiBiCiDi
1A1 = -509.81B1 = -0.0717C1 = -17.3D1 = 12272.3
2A2 = 2703.96B2 = 0.5683C2 = -122.2D2 = -110146.9
3A3 = -9151.22B3 = -2.1461C3 = 847.1D3 = 440190.3
4A4 = 20543.76B4 = 4.4862C4 = -2054.7D4 = -868593.3
5A5 = -25122.01B5 = -4.8284C5 = 2289.6D5 = -832663.5
6A6 = 12140.51B6 = 2.0617C6 = -977.3D6 = -310120.4
7A7 = -509.81B7 = -0.0718C7 = -17.3D7 = 12272.3
表3  拟合关系式(12)中的6次多项式拟合参数表
图9  α、n、lnA、Q与应变的关系曲线
图10  不同变形条件下流变应力实验值与理论计算值的对比
图11  流变应力理论计算值与实验值的比较
图12  1173 K时不同应变速率下Al19.3Co15Cr15Ni50.7热变形样品显微组织的BSE-SEM像(a) 0.001 s-1 (b) 0.01 s-1 (c) 0.1 s-1
图13  不同应变条件下的热加工图(a) ε = 0.3 (b) ε = 0.4 (c) ε = 0.5 (d) ε = 0.6 (e) ε = 0.7
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Murty B S, Yeh J W, Ranganathan S, et al. Alloy design and phase selection rules in high-entropy alloys [A]. High-Entropy Alloys [M]. Amsterdam: Elsevier, 2019: 51
3 Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7: 43
4 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
5 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
6 Baker L, Wu M, Wang Z W. Eutectic/eutectoid multi-principle component alloys: A review [J]. Mater. Charact., 2019, 147: 545
7 Jiang H, Qiao D X, Lu Y P, et al. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability [J]. Scr. Mater., 2019, 165: 145
8 Liu D J, Yu P F, Li G, et al. High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system [J]. Mater. Sci. Eng., 2018, A724: 283
9 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22: 361
10 Guo J T, Cui C Y, Chen Y X, et al. Microstructure, interface and mechanical property of the DS NiAl/Cr(Mo, Hf) composite [J]. Intermetallics, 2001, 9: 287
11 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
12 Aghaie-Khafri M, Golarzi N. Dynamic and metadynamic recrystallization of Hastelloy X superalloy [J]. J. Mater. Sci., 2008, 43: 3717
13 Lin P, Feng A H, Yuan S J, et al. Microstructure and texture evolution of a near-α titanium alloy during hot deformation [J]. Mater. Sci. Eng., 2013, A563: 16
14 Prasad Y V R K. Author's reply: Dynamic materials model: basis and principles [J]. Metall. Mater. Trans., 1996, 27A: 235
15 Wang L, Yang G, Lei T, et al. Hot deformation behavior of GH738 for A-USC turbine blades [J]. J. Iron Steel Res. Int., 2015, 22: 1043
16 Zhao M M, Qin S, Feng J, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel [J]. Acta Metall. Sin., 2020, 56: 960
16 赵嫚嫚, 秦 森, 冯 捷等. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响 [J]. 金属学报, 2020, 56: 960
17 Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation [J]. Forg. Stamp. Technol., 2018, 43(1): 176
17 肖艳红, 郭 成. 30Cr钢高温变形流变应力模型 [J]. 锻压技术, 2018, 43(1): 176
18 Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
19 Huang T Y. Materials Processing Technology [M]. Beijing: Tsinghua University Press, 2009: 20
19 黄天佑. 材料加工工艺 [M]. 北京: 清华大学出版社, 2009: 20
20 Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Comput. Mater. Sci., 2008, 42: 470
21 Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy [J]. J. Mater. Process. Technol., 2002, 125-126: 242
22 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
23 Lin Y C, Wen D X, Deng J, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Mater. Des., 2014, 59: 115
24 Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys [J]. Mater. Sci. Eng., 2007, A447: 99
25 Wang Y, Lin D L, Law C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. J. Mater. Sci. Lett., 2000, 19: 1185
26 Lino R, Guadanini L G L, Silva L B, et al. Effect of Nb and Ti addition on activation energy for austenite hot deformation [J]. J. Mater. Res. Technol., 2019, 8: 180
27 Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
27 肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
28 Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Int. Mater. Rev., 1998, 43: 243
29 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[5] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[6] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[7] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[8] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[9] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[10] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[11] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[12] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[13] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[14] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[15] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.