|
|
冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响 |
郭小童1,2, 郑为为1, 李龙飞1, 冯强1( ) |
1 北京科技大学新金属材料国家重点实验室 北京 100083 2 中国电子产品可靠性与环境试验研究所 广州 510610 |
|
Cooling Rate Driven Thin-Wall Effects on the Microstructures and Stress Rupture Properties of K465 Superalloy |
GUO Xiaotong1,2, ZHENG Weiwei1, LI Longfei1, FENG Qiang1( ) |
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 2 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China |
引用本文:
郭小童, 郑为为, 李龙飞, 冯强. 冷却速率导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666.
Xiaotong GUO,
Weiwei ZHENG,
Longfei LI,
Qiang FENG.
Cooling Rate Driven Thin-Wall Effects on the Microstructures and Stress Rupture Properties of K465 Superalloy[J]. Acta Metall Sin, 2020, 56(12): 1654-1666.
[1] |
Bunker R S, Wallace T T. Turbine airfoil with double shell outer wall [P]. US Pat, 5328331A, 1994
|
[2] |
Jackson M R, Skelly D W, Rowe R G, et al. Double wall turbine parts [P]. US Pat, 5820337A, 1998
|
[3] |
Bunker R S, Huang S C, Klug F J. Cooling of a double walled turbine blade and method of fabrication [P]. EP Pat, 1369554A1, 2003
|
[4] |
Liang G. Thin turbine rotor blade with sinusoidal flow cooling channels [P]. US Pat, 7753650 B1, 2010
|
[5] |
Chung V, Ortiz M, Poon K. Thin wall cooling system [P]. US Pat, 6478535 B1, 2002
|
[6] |
Zheng Y R. Size effects of thin section for single crystal turbine blade superalloys [J]. J. Mater. Eng., 2007, (7): 74
|
[6] |
(郑运荣. 单晶涡轮叶片合金的薄截面尺寸效应 [J]. 材料工程, 2007, (7): 74)
|
[7] |
Seetharaman V, Cetel A D. Thickness debit in creep properties of PWA 1484 [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys [C]. Seven Springs, Pennsylvania: TMS, 2004: 207
|
[8] |
Duhl D N. Directionally solidified superalloys [A]. Superalloys II High Temperature Materials for Aerospace and Industrial Power [C]. New York: John Wiley and Sons, 1987: 189
|
[9] |
Zheng Y R, Cai Y L. Notable problems in microstructure analysis of superalloy castings [J]. J. Mater. Eng., 1982, (6): 29
|
[9] |
(郑运荣, 蔡玉林. 高温合金铸件显微组织分析中值得注意的问题 [J]. 材料工程, 1982, (6): 29)
|
[10] |
Pal J, Srinivasan D, Cheng E. Effect of rejuvenation heat treatment and aging on the microstructural evolution in René N5 single crystal Ni base superalloy blades [A]. Superalloys 2016: Proceedings of the 13th International Symposium of Superalloys [C]. Seven Springs, Pennsylvania: TMS, 2016: 285
|
[11] |
Brunner M, Bensch M, Völkl R, et al. Thickness influence on creep properties for Ni-based superalloy M247LC SX [J]. Mater. Sci. Eng., 2012, A550: 254
|
[12] |
Academic Committee of the Superalloys, CSM. China Superalloys Handbook [M]. Beijing: Standards Press of China, 2012: 232
|
[12] |
(中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国标准出版社, 2012: 232)
|
[13] |
Yuan X F, Song J X, Zheng Y R, et al. Abnormal stress rupture property in K465 superalloy caused by microstructural degradation at 975 ℃/225 MPa [J]. J. Alloys Compd., 2016, 662: 583
doi: 10.1016/j.jallcom.2015.12.086
|
[14] |
Yuan X F, Song J X, Zheng Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy [J]. Mater. Sci. Eng., 2016, A651: 734
|
[15] |
Yang J X, Zheng Q, Sun X F, et al. Morphological evolution of γ' phase in K465 superalloy during prolonged aging [J]. Mater. Sci. Eng., 2007, A457: 148
|
[16] |
Yang J X, Zheng Q, Sun X F, et al. Formation of μ phase during thermal exposure and its effect on the properties of K465 superalloy [J]. Scr. Mater., 2006, 55: 331
doi: 10.1016/j.scriptamat.2006.04.032
|
[17] |
Guo X T, Zheng W W, Xiao C B, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating [J]. Eng. Fail. Anal., 2019, 103: 308
doi: 10.1016/j.engfailanal.2019.04.021
|
[18] |
Yuan X F. The assessment of normal service induced damage in high pressure turbine blades made of equiaxed crystal cast superalloy K465 [D]. Beijing: University of Science and Technology Beijing, 2015
|
[18] |
(袁晓飞. 等轴晶铸造K465合金高压涡轮叶片正常服役损伤及其评价研究 [D]. 北京: 北京科技大学, 2015)
|
[19] |
Guo X T, Antonov S, Lu F, et al. Solidification rate driven microstructural stability and its effect on the creep property of a polycrystalline nickel-based superalloy K465 [J]. Mater. Sci. Eng., 2020, A770: 138530
|
[20] |
Jeong H W, Seo S M, Choi B G, et al. Effect of long-term thermal exposures on microstructures and mechanical properties of directionally solidified CM247LC alloy [J]. Met. Mater. Int., 2013, 19: 917
doi: 10.1007/s12540-013-5003-5
|
[21] |
Cheng K Y, Jo C Y, Kim D H, et al. Influence of local chemical segregation on the γ′ directional coarsening behavior in single crystal superalloy CMSX-4 [J]. Mater. Charact., 2009, 60: 210
doi: 10.1016/j.matchar.2008.09.002
|
[22] |
Sun W, Qin X Z, Guo J T, et al. Thermal stability of primary MC carbide and its influence on the performance of cast Ni-base superalloys [J]. Mater. Des., 2015, 69: 81
doi: 10.1016/j.matdes.2014.12.038
|
[23] |
Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy [J]. Mater. Sci. Eng., 2012, A543: 121
|
[24] |
Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 90
|
[25] |
Godovanets M A, Prusakov B A, Lysenko I I. Regenerative heat treatment of blades of high-temperature nickel alloys [J]. Met. Sci. Heat Treat., 1996, 38: 202
doi: 10.1007/BF01397020
|
[26] |
Johnston J R, Dreshfield R L, Collins H E. Effect of casting geometry on mechanical properties of two nickel-base superalloys [R]. Ohio: NACA Technical Memorandum X-3386, 1976
|
[27] |
Lloyd R D. The effect of casting variables and section size on the stress-rupture life of a high temperature nickel base alloy [A]. AIME Spring Meeting [C]. Pittsburgh: SAE International, 1969: 1
|
[28] |
Bensch M, Fleischmann E, Konrad C H, et al. Secondary creep of thin-walled specimens affected by oxidation [A]. Superalloys 2012: Proceedings of the 12th International Symposium on Superalloys [C]. Seven Springs, Pennsylvania: TMS, 2012: 387
|
[29] |
Yang J X, Zheng Q, Sun X F, et al. Morphological evolution of MC carbide in K465 superalloy [J]. J. Mater. Sci., 2006, 41: 6476
doi: 10.1007/s10853-006-0684-5
|
[30] |
Yang J X, Zheng Q, Sun X F, et al. Morphological evolution of γ′ phase in K465 superalloy during thermal fatigue [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1986
|
[31] |
Wang F, Ma D X, Bührig-Polaczek A. Eutectic formation during solidification of Ni-based single-crystal superalloys with additional carbon [J]. Metall. Mater. Trans., 2017, 48A: 5442
|
[32] |
Gong L, Chen B, Zhang L, et al. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34: 811
doi: 10.1016/j.jmst.2017.03.023
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|