|
|
CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究 |
杜子杰1,2, 李文渊2( ), 刘建荣2, 锁红波3, 王清江2 |
1 中国科学技术大学材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 沈阳 110016 3 青岛卓思三维智造技术有限公司 青岛 266109 |
|
Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process |
DU Zijie1,2, LI Wenyuan2( ), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109, China |
引用本文:
杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
Zijie DU,
Wenyuan LI,
Jianrong LIU,
Hongbo SUO,
Qingjiang WANG.
Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. Acta Metall Sin, 2020, 56(12): 1667-1680.
[1] |
Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titan. Ind. Prog., 2004, 21(5): 19
|
[1] |
(李 梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
|
[2] |
Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
|
[2] |
(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
|
[3] |
Feng B X, Mao X N, Yang G J, et al. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, A512: 105
|
[4] |
Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
|
[5] |
Peng X N, Guo H Z, Wang T, et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2012, A533: 55
|
[6] |
Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
|
[6] |
(刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
|
[7] |
Hong Q, Han D, Guo P, et al. Flow properties and microstructure evolution of TC4-DT alloy at high temperature [J]. Hot Working Technol., 2017, 46(7): 189
|
[7] |
(洪 权, 韩 栋, 郭 萍等. TC4-DT合金的高温流变特性及组织演变 [J]. 热加工工艺, 2017, 46(7): 189)
|
[8] |
Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
[8] |
(巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
|
[9] |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
[10] |
Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (suppl.1): 20
|
[10] |
(李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊1): 20)
|
[11] |
Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM) [J]. Materials, 2019, 12: 1121
doi: 10.3390/ma12071121
|
[12] |
Pan Z X, Ding D H, Wu B T, et al. Arc welding processes for additive manufacturing: A review [A]. Transactions on Intelligent Welding Manufacturing [C]. Singapore: Springer, 2018: 3
|
[13] |
Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
|
[14] |
Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad [J]. Aerosp. Manuf. Technol., 2015, (2): 57
|
[14] |
(田彩兰, 陈济轮, 董 鹏等. 国外电弧增材制造技术的研究现状及展望 [J]. 航天制造技术, 2015, (2): 57)
|
[15] |
Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
doi: 10.1007/s00170-011-3299-1
|
[16] |
Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
|
[16] |
(王 斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
|
[17] |
Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition [J]. J. Mater. Process. Technol., 2011, 211: 1146
doi: 10.1016/j.jmatprotec.2011.01.018
|
[18] |
Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment [J]. J. Mech. Behav. Biomed. Mater., 2017, 69: 19
doi: 10.1016/j.jmbbm.2016.12.015
pmid: 28033532
|
[19] |
He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
[19] |
(何 智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
|
[20] |
Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
doi: 10.3390/ma11071104
|
[21] |
Xu F D, Dhokia V, Colegrove P, et al. Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing Ti-6Al-4V parts [J]. Int. J. Comput. Integr. Manuf., 2018, 31: 785
doi: 10.1080/0951192X.2018.1466395
|
[22] |
Park S C, Choi B K. Tool-path planning for direction-parallel area milling [J]. Comput. Aided Des., 2000, 32: 17
doi: 10.1016/S0010-4485(99)00080-9
|
[23] |
Rajan V T, Srinivasan V, Tarabanis K A. The optimal zigzag direction for filling a two-dimensional region [J]. Rapid Prototyping J., 2001, 7(5): 231
doi: 10.1108/13552540110410431
|
[24] |
Hu Z Q, Qin X P, Li Y F, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing [J]. J. Intell. Manuf., 2020, 31: 1133
doi: 10.1007/s10845-019-01501-z
|
[25] |
Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J]. Mater. Sci. Technol., 2012, 20(2): 128
|
[25] |
(张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
|
[26] |
Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
|
[26] |
(刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019)
|
[27] |
Suo H B. Microstructure and mechanical properties of Ti6Al4V produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
[27] |
(锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
|
[28] |
Du Z J, Li W Y, Liu J R, et al. Microstructure and its CET prediction of TC4-DT by CMT mode wire and arc additive manufacturing [J]. Chin. J. Mater. Res., 2020, 34: 518
|
[28] |
(杜子杰, 李文渊, 刘建荣等. CMT成型TC4-DT合金组织及形成机理的CET模型预测 [J]. 材料研究学报, 2020, 34: 518)
|
[29] |
Zhao Z B. The crystallographic orientation of α phase in Ti60 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2014
|
[29] |
(赵子博. Ti60合金中α相的晶体取向研究 [D]. 北京: 中国科学院大学, 2014)
|
[30] |
de Formanoir C, Michotte S, Rigo O, et al. Electron beam melted Ti-6Al-4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material [J]. Mater. Sci. Eng., 2016, A652: 105
|
[31] |
Paradkar A G, Kamat S V, Gogia A K, et al. On the validity of Hall-Petch equation for single-phase β Ti-Al-Nb alloys undergoing stress-induced martensitic transformation [J]. Mater. Sci. Eng., 2009, A520: 168
|
[32] |
Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
|
[33] |
Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
doi: 10.1016/j.actamat.2004.09.040
|
[34] |
Li H, Boehlert C J, Bieler T R, et al. Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296 K and 728 K [J]. Philos. Mag., 2015, 95: 691
doi: 10.1080/14786435.2014.1001459
|
[35] |
Pilchak A L, Williams R E A, Williams J C. Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V [J]. Metall. Mater. Trans., 2010, 41A: 106
|
[36] |
Yu Y N. Fundamentals of Material Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 350
|
[36] |
(余永宁. 材料科学基础 [M]. 第2版. 北京: 高等教育出版社, 2012: 350)
|
[37] |
Hu G X, Cai X. Fundamentals of Material Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 172
|
[37] |
(胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 172)
|
[38] |
Pan J S, Tong J M, Tian M B. Fundamentals of Material Science [M]. Beijing: Tsinghua University Press, 2011: 1
|
[38] |
(潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|