Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1667-1680    DOI: 10.11900/0412.1961.2020.00104
  本期目录 | 过刊浏览 |
CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究
杜子杰1,2, 李文渊2(), 刘建荣2, 锁红波3, 王清江2
1 中国科学技术大学材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 沈阳 110016
3 青岛卓思三维智造技术有限公司 青岛 266109
Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process
DU Zijie1,2, LI Wenyuan2(), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109, China
引用本文:

杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.
Zijie DU, Wenyuan LI, Jianrong LIU, Hongbo SUO, Qingjiang WANG. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. Acta Metall Sin, 2020, 56(12): 1667-1680.

全文: PDF(7538 KB)   HTML
摘要: 

研究了采用多道搭接形式冷金属过渡(CMT)增材制造的TC4-DT合金试块不同区域的宏观、微观组织和晶体取向差异,及其对力学性能的影响。低倍组织观察表明,堆积试块底部由尺寸较小的柱状晶和等轴晶组成,随着沉积高度的增加,转变为粗大的等轴晶,层界线呈弧形并在搭接区交叠。堆积区高倍组织主要由编织状α板条组成,搭接线两侧为细编织状组织、粗大的α片层组织和粗编织状组织组成的混合组织。普通堆积区存在由{001}β //Z丝织构转变形成的α转变织构。搭接区由于热传导的复杂性,还存在由{001}βZ方向呈22.5°~67.5°的丝织构转变而成的α转变织构。EBSD分析显示,搭接线处存在<0001>α //X方向的强织构,使得搭接线处柱面滑移和基面滑移Schmid因子均比较小,阻碍位错滑移,结合Hall-Petch关系分析表明,原始β晶界和搭接线是影响力学性能一致性的主要因素,在2种因素的共同作用下,各区域的平均有效位错滑移程呈现以下关系:搭接区<普通堆积区底部<普通堆积区顶部,导致不同区域屈服强度具有以下关系:搭接区>普通堆积区底部>普通堆积区顶部。

关键词 冷金属过渡电弧熔丝增材制造TC4-DT钛合金组织均匀性织构力学性能一致性    
Abstract

TC4-DT alloy is developed based on TC4 alloy, with medium strength and high damage-tolerance, showing a great promise to be widely used in aerospace field. However, the traditional method to fabricate large and complicated parts has the problems of hot working difficulty, long processing cycle, low "buy-to-fly" ratio and high-cost. Additive manufacturing (AM) technology is a good alternative and has been used to manufacture titanium parts since year 2006. Compared to other AM technologies, cold metal transfer mode wire and arc additive manufacturing (CMT WAAM), as a kind of gas metal arc welding (GMAW) technology, has several advantages like simple structure, good spatial accessibility and high efficiency. In this study, a TC4-DT deposit was fabricated by CMT WAAM method. The macrostructure and microstructure, texture, and tensile properties in the overlapping zone and ordinary deposition zone were investigated and compared. The bottom of the ordinary deposition zone consisted of columnar and equiaxed prior β grains, and in higher zone the coarse equiaxed prior β grains were in the majority. The microstructure of the ordinary deposition zone was mainly characterized by basketweave α phase platelets. Microstructure of both sides of the overlapping line was characterized by a mixture of fine basketweave, lamellar and coarse basketweave α phase due to temperature gradient. Transformed α texture from {001}β//Z silk texture existed in different zones, and the texture of overlapping zone was complicated due to the complexity of heat dissipation conditions, including transformed α texture and other complicated texture. EBSD results showed that there was a strong <0001>α //X texture at the overlapping line, resulting in low Schmid factors for both prismatic slip and basal slip at the overlapping line, hindering the slip of dislocation. Combined with the Hall-Petch relationship, it was concluded that the prior β grain boundary and the overlapping line were main factors affecting the uniformity of mechanical properties. The average effective dislocation slip distances in different zones had the following relationship: overlapping zone<bottom of the ordinary deposition zone<top of the ordinary deposition zone, leading to different yield strengths in different zones of the ordinary deposition zone.

Key wordsCMT WAAM    TC4-DT titanium alloy    uniformity of microstructure    texture    uniformity of mechanical property
收稿日期: 2020-04-01     
ZTFLH:  TG146.2  
作者简介: 杜子杰,男,1995年生,硕士
图1  堆积路径示意图和试块示意图Color online
图2  室温拉伸实验板状拉伸试样、取样位置及拉伸变形行为研究观察选区
图3  冷金属过渡(CMT)成形TC4-DT合金试块低倍组织(a) macrostructure of the integrated sample(b) local macrostructure of the overlapping zone(c) local macrostructure of the top of the ordinary deposition zone(d) local macrostructure of the bottom of the ordinary deposition zone
图4  CMT成形TC4-DT合金试块普通堆积区高倍组织
图5  CMT成形TC4-DT合金试块搭接区高倍组织(a, b) overlapping zone with different magnifications(c, d) microstructures above (c) and below (d) the overlapping line
图6  CMT成形TC4-DT合金试块不同区域的X方向反极图(IPF-X)Color online(a) the overlapping zone (b) top of the ordinary deposition zone (c) bottom of the ordinary deposition zone
SampleRp0.2 / MPaAverage / MPaRm / MPaAverage / MPaA / %Average / %
Overlapping zone, D78678585485111.511.0
78484810.5
Top of ordinary deposition zone, 1#72472983483715.014.8
73484014.5
Bottom of ordinary deposition zone, 2#77176287786410.510.5
75385110.5
表1  不同取样位置室温拉伸性能
图7  不同拉伸试样的真应力-应变曲线
SampleFitting curver2
D-1S=1106.34ε0.0740.9608
D-2S=1044.34ε0.0520.9754
D-averageS=1075.34ε0.063
1#-1S=1151.01ε0.0980.9869
1#-2S=1092.49ε0.0730.9700
1#-averageS=1121.75ε0.086
2#-1S=1153.92ε0.0780.9782
2#-2S=1147.38ε0.0880.9791
2#-averageS=1150.65ε0.083
表2  Hollomon方程拟合结果
图8  不同取样位置拉伸断口形貌
图9  不同取样位置试样断口侧面形貌
图10  D试样在1%塑性变形后不同选区的激光共聚焦高度图Color online(a) overlapping lines (b) 1st area on the ordinary deposition zone (c) 2nd area on the ordinary deposition zone
图11  D试样在1%塑性变形后不同选区的滑移形貌、EBSD取向图及转变α相反极图Color online(a~c) overlapping lines(d~f) 1st area on the ordinary deposition zone(g~i) 2nd area on the ordinary deposition zone
图12  搭接区组织分区及最快散热方向示意图
图13  D试样1%塑性变形后不同EBSD选区内残留β相{100}极图Color online(a) overlapping lines (b) 1st area on the ordinary deposition zone (c) 2nd area on the ordinary deposition zone
图14  CMT成形TC4-DT试块不同区域的滑移程示意图
[1] Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titan. Ind. Prog., 2004, 21(5): 19
[1] (李 梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
[2] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
[2] (张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
[3] Feng B X, Mao X N, Yang G J, et al. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, A512: 105
[4] Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
[5] Peng X N, Guo H Z, Wang T, et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2012, A533: 55
[6] Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
[6] (刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
[7] Hong Q, Han D, Guo P, et al. Flow properties and microstructure evolution of TC4-DT alloy at high temperature [J]. Hot Working Technol., 2017, 46(7): 189
[7] (洪 权, 韩 栋, 郭 萍等. TC4-DT合金的高温流变特性及组织演变 [J]. 热加工工艺, 2017, 46(7): 189)
[8] Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
[8] (巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
[9] Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
[10] Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (suppl.1): 20
[10] (李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊1): 20)
[11] Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM) [J]. Materials, 2019, 12: 1121
doi: 10.3390/ma12071121
[12] Pan Z X, Ding D H, Wu B T, et al. Arc welding processes for additive manufacturing: A review [A]. Transactions on Intelligent Welding Manufacturing [C]. Singapore: Springer, 2018: 3
[13] Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
[14] Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad [J]. Aerosp. Manuf. Technol., 2015, (2): 57
[14] (田彩兰, 陈济轮, 董 鹏等. 国外电弧增材制造技术的研究现状及展望 [J]. 航天制造技术, 2015, (2): 57)
[15] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
doi: 10.1007/s00170-011-3299-1
[16] Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
[16] (王 斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
[17] Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition [J]. J. Mater. Process. Technol., 2011, 211: 1146
doi: 10.1016/j.jmatprotec.2011.01.018
[18] Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment [J]. J. Mech. Behav. Biomed. Mater., 2017, 69: 19
doi: 10.1016/j.jmbbm.2016.12.015 pmid: 28033532
[19] He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science and Technology, 2016
[19] (何 智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
[20] Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
doi: 10.3390/ma11071104
[21] Xu F D, Dhokia V, Colegrove P, et al. Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing Ti-6Al-4V parts [J]. Int. J. Comput. Integr. Manuf., 2018, 31: 785
doi: 10.1080/0951192X.2018.1466395
[22] Park S C, Choi B K. Tool-path planning for direction-parallel area milling [J]. Comput. Aided Des., 2000, 32: 17
doi: 10.1016/S0010-4485(99)00080-9
[23] Rajan V T, Srinivasan V, Tarabanis K A. The optimal zigzag direction for filling a two-dimensional region [J]. Rapid Prototyping J., 2001, 7(5): 231
doi: 10.1108/13552540110410431
[24] Hu Z Q, Qin X P, Li Y F, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing [J]. J. Intell. Manuf., 2020, 31: 1133
doi: 10.1007/s10845-019-01501-z
[25] Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J]. Mater. Sci. Technol., 2012, 20(2): 128
[25] (张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
[26] Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
[26] (刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019)
[27] Suo H B. Microstructure and mechanical properties of Ti6Al4V produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science and Technology, 2014
[27] (锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
[28] Du Z J, Li W Y, Liu J R, et al. Microstructure and its CET prediction of TC4-DT by CMT mode wire and arc additive manufacturing [J]. Chin. J. Mater. Res., 2020, 34: 518
[28] (杜子杰, 李文渊, 刘建荣等. CMT成型TC4-DT合金组织及形成机理的CET模型预测 [J]. 材料研究学报, 2020, 34: 518)
[29] Zhao Z B. The crystallographic orientation of α phase in Ti60 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2014
[29] (赵子博. Ti60合金中α相的晶体取向研究 [D]. 北京: 中国科学院大学, 2014)
[30] de Formanoir C, Michotte S, Rigo O, et al. Electron beam melted Ti-6Al-4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material [J]. Mater. Sci. Eng., 2016, A652: 105
[31] Paradkar A G, Kamat S V, Gogia A K, et al. On the validity of Hall-Petch equation for single-phase β Ti-Al-Nb alloys undergoing stress-induced martensitic transformation [J]. Mater. Sci. Eng., 2009, A520: 168
[32] Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
[33] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
doi: 10.1016/j.actamat.2004.09.040
[34] Li H, Boehlert C J, Bieler T R, et al. Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296 K and 728 K [J]. Philos. Mag., 2015, 95: 691
doi: 10.1080/14786435.2014.1001459
[35] Pilchak A L, Williams R E A, Williams J C. Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V [J]. Metall. Mater. Trans., 2010, 41A: 106
[36] Yu Y N. Fundamentals of Material Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 350
[36] (余永宁. 材料科学基础 [M]. 第2版. 北京: 高等教育出版社, 2012: 350)
[37] Hu G X, Cai X. Fundamentals of Material Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 172
[37] (胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 172)
[38] Pan J S, Tong J M, Tian M B. Fundamentals of Material Science [M]. Beijing: Tsinghua University Press, 2011: 1
[38] (潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[7] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[10] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[11] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[12] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[13] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[14] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[15] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.