|
|
形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究 |
刘天, 罗锐( ), 程晓农, 郑琦, 陈乐利, 王茜 |
江苏大学材料科学与工程学院 镇江 212013 |
|
Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel |
LIU Tian, LUO Rui( ), CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian |
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
Tian LIU,
Rui LUO,
Xiaonong CHENG,
Qi ZHENG,
Leli CHEN,
Qian WANG.
Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. Acta Metall Sin, 2020, 56(11): 1452-1462.
[1] |
Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
doi: 10.1126/science.1137711
pmid: 17446398
|
[2] |
Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates [J]. Intermetallics, 2008, 16: 453
doi: 10.1016/j.intermet.2007.12.005
|
[3] |
Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231
|
[4] |
Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels [J]. Mater. Sci. Eng., 2010, A527: 2079
|
[5] |
Leitner H, Schober M, Schnitzer R. Splitting phenomenon in the precipitation evolution in an Fe-Ni-Al-Ti-Cr stainless steel [J]. Acta Mater., 2010, 58: 1261
|
[6] |
Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers [J]. Energy Mater., 2007, 2: 199
|
[7] |
Kim W G, Yoon S N, Ryu W S. Application and standard error analysis of the parametric methods for predicting the creep life of type 316LN SS [J]. Key. Eng. Mater., 2005, 297-300: 2272
|
[8] |
Hart R V. Assessment of remaining creep life using accelerated stress-rupture tests [J]. Met. Technol., 1976, 3: 1
doi: 10.1179/030716976803391746
|
[9] |
Penny R K, Marriott D L. Design for Creep [M]. London: Chapman & Hall, 1995: 40
|
[10] |
Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley & Sons, 1987: 1
|
[11] |
Yuan C, Guo J T, Yang H C. Cyclic creep behavior of directionally solidified nickel-base superalloy DZ17G [J]. Acta Metall. Sin., 1999, 35: 942
|
[11] |
(袁 超, 郭建亭, 杨洪才. 定向凝固镍基高温合金DZ17G的循环蠕变行为 [J]. 金属学报, 1999, 35: 942)
|
[12] |
Nechache A, Bouzid A H. The effect of cylinder and hub creep on the load relaxation in bolted flanged joints [J]. J. Pressure Vessel Technol., 2008, 130: 031211
|
[13] |
Gjestland H, Nussbaum G, Regazzoni G, et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys [J]. Mater. Sci. Eng., 1991, A134: 1197
|
[14] |
Zhou Y M, Zhao Z P, Li H L. The microstructure and stress ralaxation property of 12%Cr steel [J]. Mater. Mech. Eng., 1992, 16: 27
|
[14] |
(周晔明, 赵中平, 李感琳. 12%Cr钢的组织与应力松弛性能 [J]. 机械工程材料, 1992, 16: 27)
|
[15] |
Mandziej S T, Vyrostkova A, Solar M. Accelerated creep testing of new creep-resisting weld metals [J]. Weld. World, 2010, 54: R160
|
[16] |
Mandziej S T. Accelerated microstructure transformation caused by thermal-mechanical fatigue [J]. Mater. Sci. Forum, 2012, 706-709: 871
|
[17] |
Kasl J, Jandová D, Mandziej S T, et al. Comparison of results of accelerated and conventional creep tests of dissimilar weld joint of steels FB2 and F [J]. Mater. Sci. Forum, 2017, 891: 322
|
[18] |
Mandziej S T, Výrostková A. Evolution of Cr-Mo-V weld metal microstructure during creep testing—Part 1: P91 material [J]. Weld. World, 2008, 52: 3
|
[19] |
Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 801
|
[20] |
Cadek J. Creep in Metallic Materials [M]. Amsterdam: Elsevier, 1988: 33
|
[21] |
Zurob H S, Hutchinson C R, Brechet Y, et al. Modeling recrystallization of microalloyed austenite: Effect of coupling recovery, precipitation and recrystallization [J]. Acta Mater., 2002, 50: 3077
|
[22] |
Heilmaier M, Reppich B. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach [J]. Metall. Mater. Trans., 1996, 27A: 3861
|
[23] |
Wang W Z, Buhl P, Klenk A, et al. Influence of high-temperature dwell time on creep-fatigue behavior in a 1000 MW steam turbine rotor [J]. Eng. Fract. Mech., 2016, 166: 1
|
[24] |
Zhou D Q, Xu X Q, Mao H H, et al. Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures [J]. Mater. Sci. Eng., 2014, A594: 246
|
[25] |
Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure [J]. Scr. Mater., 2008, 59: 963
|
[26] |
Brady M P, Yamamoto Y, Muralidharan G, et al. Deployment of alumina forming austenitic (AFA) stainless steel [R]. Oak Ridge:Oak Ridge National Laboratory, 2013: 28
|
[27] |
Rodney D. Molecular dynamics simulation of screw dislocations interacting with interstitial frank loops in a model FCC crystal [J]. Acta Mater., 2004, 52: 607
|
[28] |
Lv X Z, Zhang J X. Core structure of a <100> interfacial superdislocations in a nickel-base superalloy during high-temperature and low-stress creep [J]. Mater. Sci. Eng., 2017, A683: 9
|
[29] |
Brager H R, Straalsund J L. Frank loop development in neutron-irradiated cold-worked type 316 stainless steel [J]. J. Nucl. Mater., 1973, 47: 105
|
[30] |
Karaman I, Sehitoglu H, Gall K, et al. On the deformation mechanisms in single crystal hadfield manganese steels [J]. Scr. Mater., 1998, 38: 1009
|
[31] |
Broek D. Elementary Engineering Fracture Mechanics [M]. Netherlands: Springer, 1982: 56
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|