Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 549-557    DOI: 10.11900/0412.1961.2019.00453
  综述 本期目录 | 过刊浏览 |
高强度不锈钢的研究及发展现状
刘振宝(),梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇
钢铁研究总院特殊钢研究所 北京 100081
Research and Application Progress in Ultra-HighStrength Stainless Steel
LIU Zhenbao(),LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong
Division of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
Zhenbao LIU, Jianxiong LIANG, Jie SU, Xiaohui WANG, Yongqing SUN, Changjun WANG, Zhiyong YANG. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. Acta Metall Sin, 2020, 56(4): 549-557.

全文: PDF(1599 KB)   HTML
摘要: 

高强度不锈钢作为强度、韧性及服役安全性俱佳的金属结构材料,广泛应用于航空、航天及海洋工程等领域。本文系统地梳理了高强度不锈钢的研究及发展历程,重点阐述了以析出强化和奥氏体韧化为代表的强韧化机理,及以氢致开裂和H原子扩散富集为主要因素的应力腐蚀及氢脆敏感性问题。认为高强度不锈钢的未来发展将重点关注计算模拟设计,多类型、高共格度析出相复合强化,高机械稳定性的薄膜状奥氏体韧化,综合显微组织和服役环境加深对应力腐蚀及氢脆机理的理解,从而为设计兼备超高强韧性、优良综合服役性能的高强不锈钢提供实际的理论依据。

关键词 超高强度不锈钢强韧化机理氢脆应力腐蚀析出相逆转变奥氏体    
Abstract

In the present work, the development and research on ultra-high strength stainless steels (UHSSS) have been systematically reviewed. Specifically, the focus was primarily placed on the precipitation hardening and austenite phase toughening mechanisms. And, the hydrogen-induced stress corrosion cracking (SCC) and hydrogen embrittlement (HE) behaviors of high-strength stainless steels were also retrospected. It is suggested that the future development of UHSSS is on the basis of computer-aided alloy designing system, strengthening via multiple high-coherency precipitates and toughening by filmy high-stability austenite phase. Besides, verification of the SCC and HE underlying mechanisms is vital to further optimizing the performance of UHSSS.

Key wordsultra-high strength stainless steel    strengthening and toughening mechanism    hydrogen embrittlement    stress corrosion    precipitate    reverted austenite
收稿日期: 2019-12-27     
ZTFLH:  TG142.71  
基金资助:国家重点研发计划项目(2016YFB0300104)
作者简介: 刘振宝,男,1977年生,教授,博士
SteelCCrNiTiMoAlCuCoMnWFe
17-4PH0.0716.04.0---4.0-≤1.0-Bal.
15-5PH0.0415.04.7---3.0-≤1.0-Bal.
Custom4500.0414.98.5---1.5---Bal.
PH13-80.0312.67.9-1.71.0----Bal.
Ultrafort4010.0212.08.20.82.0--5.3--Bal.
Ultrafort4030.0211.07.70.44.4--9.0--Bal.
1RK910.0112.29.00.874.00.331.95-0.320.15Bal.
Custom4650.0211.611.01.51.0-----Bal.
USS122G0.0912.03.0-5.0--14.0-1.0Bal.
Ferrium?S530.219.04.80.021.5--13.0-1.0Bal.
表1  典型高强度不锈钢的合金成分[13,14,15,16,17,18,19,20,21] (mass fraction / %)
SteelRp0.2 / MPaRm / MPaKIC / (MPa·m1/2)AKU / JStrengthening phase
17-4PH12621365-21Cu
15-5PH12131289-79Cu
Custom45012691289-55Cu
PH13-814481551-41NiAl
Ultrafort4011565166910356Ni3Ti
Ultrafort403166916896034Ni3Ti
1RK91150017005827Cu/Ni3Ti
Custom4651703177971-Ni3Ti
USS122G1550194090-Laves/α'
Ferrium?S531551198677-M2C
表2  典型高强度不锈钢的力学性能[13,14,15,16,17,18,19,20,21]
图1  新型高强度不锈钢时效态试样APT表征结果
[1] Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear [J]. J. Aeronaut. Mater., 2017, 36(6): 1
[1] 赵 博, 许广兴, 贺 飞等. 飞机起落架用超高强度钢应用现状及展望 [J]. 航空材料学报, 2017, 36(6): 1
[2] Yang Z Y, Liu Z B, Liang J X, et al. Development of maraging stainless steel [J]. Trans. Mater. Heat Treat., 2008, 29(4): 1
[2] 杨志勇, 刘振宝, 梁剑雄等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29(4): 1
[3] Yang K, Niu M C, Tian J L, et al. Research and development of maraging stainless steel used for new generation landing gear [J]. Acta Metall. Sin., 2018, 54: 1567
[3] 杨 柯, 牛梦超, 田家龙等. 新一代飞机起落架用马氏体时效不锈钢的研究 [J]. 金属学报, 2018, 54: 1567
[4] Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 ℃ [J]. Mater. Charact., 2006, 57: 274
[5] Zhang T P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel [J]. Mater. Charact., 2018, 144: 393
[6] Anil K V, Karthikeyan M K, Gupta R K, et al. Aging behavior in 15-5 PH precipitation hardening martensitic stainless steel [J]. Mater. Sci. Forum, 2012, 710: 483
[7] Palanisamy D, Senthil P, Senthilkumar V. The effect of aging on machinability of 15Cr-5Ni precipitation hardened stainless steel [J]. Arch. Civil Mech. Eng., 2016, 16: 53
[8] Martin J W, Kosa T, Dulmaine B A. High-strength, notch-ductile precipitation-hardening stainless steel alloy [P]. US, 5681528, 1997
[9] Martin J W, Kosa T. Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom [P]. US, 6630103, 2003
[10] Olson G B, Kuehmann C J. Materials genomics: From CALPHAD to flight [J]. Scr. Mater., 2014, 70: 25
[11] Lu S Y, Zhang T K. Stainless Steel [M]. Beijing: Atomic Energy Press, 1995: 19
[11] 陆世英, 张廷凯. 不锈钢 [M]. 北京: 原子能出版社, 1995: 19
[12] Liu Z B, Yang Z Y, Yong Q L, et al. A 1900 MPa grade ultra-high strength stainless steel [J]. Mater. Mech. Eng., 2008, 32(3): 48
[12] 刘振宝, 杨志勇, 雍歧龙等. 1900 MPa级超高强度不锈钢的研制 [J]. 机械工程材料, 2008, 32(3): 48
[13] Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[14] Bratukhin A G. Ways to increase the reliability of welded joints of high-strength steels in a new generation of aircraft [J]. Met. Sci. Heat Treat., 1997, 39: 123
[15] Voznesenskaya N M, Kablov E N, Petrakov A F, et al. High-strength corrosion-resistant steels of the austenitic-martensitic class [J]. Met. Sci. Heat Treat., 2002, 44: 300
[16] Kostina M V, Bannykh O A, Blinov V M. Effect of plastic deformation and heat treatment on the structure and hardening of nitrogen-bearing steel 0Kh16AN4B [J]. Met. Sci. Heat Treat., 2001, 43: 259
[17] Il'ina V P. Effect of heat treatment mode on the microstructure and fracture behavior of maraging steels 03Kh11N10M2T-VD and 03Kh11N10M2T2-VD [J]. Met. Sci. Heat Treat., 2002, 44: 116
[18] Rundkvist N A, Grachev S V. Effect of alloying and of the austenizing temperature on the phase composition and properties of corrosion-resistant maraging steels [J]. Met. Sci. Heat Treat., 1989, 31: 244
[19] Bel'tyukov A A, Stepanov V P, Shein A S. Effect of carbon on the properties of corrosion-resistat maraging steels without titanium [J]. Met. Sci. Heat Treat., 1989, 31: 830
[20] Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J]. Acta Metall. Mater., 1995, 43: 2881
[21] Webster D. Optimization of strength and toughness in two high-strength stainless steels [J]. Metall. Trans., 1971, 2: 1857
[22] Habibi-Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel [J]. Mater. Sci. Eng., 2002, A338: 142
[23] Habibi-Bajguirani H R, Jenkins M L. High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5 [J]. Philos. Mag. Lett., 1996, 73: 155
[24] Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta Mater., 2003, 51: 101
[25] Liang J X, Liu Z B, Yang Z Y. Development and application of high strength stainless steel [J]. Aerosp. Mater. Technol., 2013, 43(3): 1
[25] 梁剑雄, 刘振宝, 杨志勇. 高强不锈钢的发展与应用技术 [J]. 宇航材料工艺, 2013, 43(3): 1
[26] Schober M, Schnitzer R, Leitner H. Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel [J]. Ultramicroscopy, 2009, 109: 553
[27] Li Y C, Yan W, Cotton J D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Des., 2015, 82: 56
[28] Lu Q, Xu W, Van Der Zwaag S. A strain-based computational design of creep-resistant steels [J]. Acta Mater., 2014, 64: 133
[29] Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, et al. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates [J]. Acta Mater., 2010, 58: 4067
[30] Lu Q, Xu W, Van Der Zwaag S. The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use [J]. Acta Mater., 2014, 77: 310
[31] P?rn J, Rarey M. Incorporating QSPR in the enumeration of fragment space [J]. Chem. Cent. J., 2009, 3: 18
[32] Matsuda S, Okamura Y. Reverse transformation of low-carbon low alloy steels [J]. Tetsu Hagané, 1974, 60: 226
[32] 松田 昭一, 岡村 義弘. 低炭素低合金鋼の逆変態 [J]. 鐵と鋼, 1974, 60: 226
[33] Watanabe S, Ohtani H, Kunitake T. The influence of hot rolling and heat treatments on the distribution of boron in steel [J]. Tetsu-Hagané, 1976, 62: 1842
[33] 渡辺 征一, 大谷 泰夫, 邦武 立郎. 鋼中Bの分布状態におよぼす熱間圧延および熱処理の影響 [J]. 鉄と鋼, 1976, 62: 1842
[34] Song Y, Li X, Rong L, et al. The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steels [J]. Mater. Sci. Eng., 2011, A528: 4075
[35] Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite [J]. ISIJ Int., 2007, 47: 1527
[36] Schnitzer R, Radis R, N?hrer M, et al. Reverted austenite in PH13-8Mo maraging steels [J]. Mater. Chem. Phys., 2010, 122: 138
[37] Liu Z B, Yang Z Y, Liang J X, et al. Growth behavior and precipitation of reverted austenite in ultra-high strength marageing stainless steel [J]. Heat Treat. Met., 2010, 35(2): 11
[37] 刘振宝, 杨志勇, 梁剑雄等. 超高强度马氏体时效不锈钢中逆转变奥氏体的析出与长大行为 [J]. 金属热处理, 2010, 35(2): 11
[38] Viswanathan U K, Dey G K, Sethumadhavan V. Effects of austenite reversion during overageing on the mechanical properties of 18Ni(350) maraging steel [J]. Mater. Sci. Eng., 2005, A398: 367
[39] Johnson W H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. R. Soc. London, 1875, 23: 168
[40] Frohmberg R P, Barnett W J, Troiano A R. Delayed failure and hydrogen embrittlement in steel [J]. Tech. Rep., 1954, DOI: 10.21236/ad0038142
[41] Nie Y H, Kimura Y, Inoue T, et al. Hydrogen embrittlement of a 1500-MPa tensile strength level steel with an ultrafine elongated grain structure [J]. Metall. Mater. Trans., 2012, 43A: 1670
[42] Nagao A, Hayashi K, Oi K, et al. Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates [J]. ISIJ Int., 2012, 52: 213
[43] Asahi H, Hirakami D, Yamasaki S. Hydrogen trapping behavior in vanadium-added steel [J]. ISIJ Int., 2003, 43: 527
[44] Wei F G, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum [J]. Metall. Mater. Trans., 2004, 35B: 587
[45] Wei F G, Hara T, Tsuzaki K. Hydrogen trapping character of nano-sized NbC precipitates in tempered martensite [A]. Proceedings of the 2008 International Hydrogen Conference-Effects of Hydrogen on Materials [C]. Materials Park, OH: ASM International, 2009: 448
[46] Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel [J]. Metall. Mater. Trans., 2006, 37A: 331
[47] Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography [J]. Scr. Mater., 2010, 63: 261
[48] Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography [J]. Scr. Mater., 2012, 67: 213
[49] Kawakami K, Matsumiya T. Numerical analysis of hydrogen trap state by TiC and V4C3 in bcc-Fe [J]. ISIJ Int., 2012, 52: 1693
[50] Li X F, Zhang J, Fu Q Q, et al. Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel [J]. Mater. Sci. Eng., 2019, A742: 353
[51] Tsay L W, Chen H H, Chiang M F, et al. The influence of aging treatments on sulfide stress corrosion cracking of PH 13-8 Mo steel welds [J]. Corros. Sci., 2007, 49: 2461
[52] Wei F G, Tsuzaki K. Hydrogen absorption of incoherent TiC particles in iron from environment at high temperatures [J]. Metall. Mater. Trans., 2004, 35A: 3155
[53] Depover T, Escobar D P, Wallaert E, et al. Effect of hydrogen charging on the mechanical properties of advanced high strength steels [J]. Int. J. Hydrogen Energy, 2014, 39: 4647
[54] Olden V, Thaulow C, Johnsen R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels [J]. Mater. Des., 2008, 29: 1934
[55] Oriani R A. Hydrogen embrittlement of steels [J]. Annu. Rev. Mater. Sci., 1978, 8: 327
[56] Liu Q L, Venezuela J, Zhang M X, et al. Hydrogen trapping in some advanced high strength steels [J]. Corros. Sci., 2016, 111: 770
[57] Li X F, Zhang J, Chen J, et al. Effect of aging treatment on hydrogen embrittlement of PH 13-8 Mo martensite stainless steel [J]. Mater. Sci. Eng., 2016, A651: 474
[58] Yang J L, Huang F, Guo Z H, et al. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure [J]. Mater. Sci. Eng., 2016, A665: 76
[59] Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrogen Energy, 2014, 39: 13031
[60] Fan Y H, Zhang B, Yi H L, et al. The role of reversed austenite in hydrogen embrittlement fracture of S41500 martensitic stainless steel [J]. Acta Mater., 2017, 139: 188
[61] Yang Y, Zhang H M, Wu Z H, et al. Analysis and protection of stress corrosion of 300M ultra-high strength steel for landing gear [J]. Equip. Environ. Eng., 2016, 13(1): 68
[61] 杨 永, 张宏明, 吴朝华等. 起落架用300M超高强度钢应力腐蚀分析与防护 [J]. 装备环境工程, 2016, 13(1): 68
[62] Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[63] Yu Q. Evolution mechanism of nanphase and its influence on corrosion of high strength stinless steel [D]. Beijing: University of Science and Technology Beijing, 2017
[63] 余 强. 高强度不锈钢中纳米析出相演变规律及其对腐蚀的影响 [D]. 北京: 北京科技大学, 2017
[64] Pardo A, Merino M C, Coy A E, et al. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels [J]. Acta Mater., 2007, 55: 2239
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[11] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[12] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[13] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[14] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[15] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.