Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 55-70    DOI: 10.11900/0412.1961.2020.00413
  综述 本期目录 | 过刊浏览 |
基于热力学和动力学协同的析出相模拟
刘峰1,2(), 王天乐1
1.西北工业大学 凝固技术国家重点实验室 西安 710072
2.西北工业大学 分析与测试中心 西安 710072
Precipitation Modeling via the Synergy of Thermodynamics and Kinetics
LIU Feng1,2(), WANG Tianle1
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University ;Xi'an 710072, China
2.Analytical & Testing Center, Northwestern Polytechnical University ;Xi'an 710072, China
引用本文:

刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
Feng LIU, Tianle WANG. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. Acta Metall Sin, 2021, 57(1): 55-70.

全文: PDF(4502 KB)   HTML
摘要: 

析出强化是提升金属材料力学性能的重要手段,研究其涉及的析出相形成过程及机理对于理性控制强化效果,意义重大。本文立足于对相变热力学和动力学协同变化的处理,简要综述了基于CALPHAD计算热力学的介观尺度析出相模拟方法(包括DICTRA模拟、Kampmann-Wagner数值模型、Svoboda-Fischer-Fratzl-Kozeschnik模型、扩散场胞法)和从第一性原理计算出发的多尺度方法(包括相场法和基于Fokker-Planck方程的多尺度组织模拟)。基于此,对金属材料热处理过程中析出相形成机理模拟研究的现状与发展前景做了探讨。

关键词 析出相热力学动力学组织模拟    
Abstract

Owing to the critical role precipitation hardening plays in the improved mechanical performance of metals, understanding the formation mechanisms of precipitates is significant for the rational control of the corresponding and correlated effects. From the perspective of the synergetic variation of thermodynamics and kinetics, the current work briefly reviews the mesoscale methods for precipitation modeling based on the computational thermodynamics of CALPHAD (including the DICTRA simulation, Kampmann-Wagner numerical model, Svoboda-Fischer-Fratzl-Kozeschnik model, and diffusion field cell model) and the multiscale methods based on first-principles calculations (including the phase field model and multiscale structural modeling using the Fokker-Planck equation). On this basis, the research and development of precipitation modeling for heat-treated metals is discussed in detail.

Key wordsprecipitate    thermodynamics    kinetics    structural modeling
收稿日期: 2020-10-16     
ZTFLH:  TG113.12  
基金资助:国家重点研发计划项目(2017YFB0703001);国家自然科学基金项目(51134011);中国博士后科学基金项目(2018M643729);陕西省自然科学基金研究计划项目(2019JQ-091);凝固技术国家重点实验室研究基金项目(2019-TZ-01)
作者简介: 刘 峰,男,1974年生,教授
图1  经典形核理论中析出相形成时Gibbs自由能变化随着半径R变化的示意图[11]
图2  DICTRA的模拟流程图[37]
图3  1053 K下Fe-12Cr-0.1C合金中稳定M23C6、亚稳M7C3和M3C的竞争析出三胞模拟[39]
图4  平均半径为Rˉ的微粒尺寸对数正态分布[46]
图5  “类Euler法”中析出物的长大[11]
图6  用不同的界面能基于SFFK模型得到的Fe-Mn-Si-Cr-Mo-Ti-C体系在600℃下的析出次序[29]
图7  不同空间尺度计算模块间关联的多尺度模型图解[93]
图8  在考虑不同各向异性条件下利用第一性原理所得热力学参量对θ'形貌的相场模拟[94](a) isotropic (b) interface only (c) strain only(d) interface+strain (e) interface+strain+kinetics (f) experiment
图9  可积深度神经网络的图示[98]
图10  Al-2%Cu (原子分数)合金中θ'在473 K析出的尺寸演化和析出序列GP区→θ"→θ' [30]
图11  Fe-2%C (原子分数)合金在473 K下ε-Fe2C、η-Fe2C和θ-Fe3C析出时体系能量演化和碳化物中基础构成单元数量的变化[58]
图12  ε-Fe2C和η-Fe2C析出时热力学驱动力和动力学能垒随着析出物中基础构成单元数量和温度的变化[58]
1 Liu F, Wang K. Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels [J]. Acta Metall. Sin., 2016, 52: 1326
1 刘 峰, 王 慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326
2 Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
3 Liu Z K. Ocean of data: Integrating first-principles calculations and CALPHAD modeling with machine learning [J]. J. Phase Equilib. Diffus., 2018, 39: 635
4 Luo Q, Chen H C, Chen W, et al. Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
5 Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864
6 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
7 de Pablo J J, Jones B, Kovacs C L, et al. The materials genome initiative, the interplay of experiment, theory and computation [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 99
8 de Pablo J J, Jackson N E, Webb M A, et al. New frontiers for the materials genome initiative [J]. npj Comput. Mater., 2019, 5: 41
9 Wagner R, Kampmann R, Voorhees P W. Homogeneous second-phase precipitation [A]. Phase Transformations in Materials [M]. New York: Wiley-VCH, 2001
10 Svoboda J, Turek I, Fischer F D. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences [J]. Philos. Mag., 2005, 85: 3699
11 Perez M, Dumont M, Acevedo-Reyes D. Implementation of classical nucleation and growth theories for precipitation [J]. Acta Mater., 2008, 56: 2119
12 Volmer M, Weber A. Keimbildung in übersӓttigten gebilden [J]. Z. Phys. Chem., 1926, 119: 277
13 Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
14 Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochim., 1943, 18: 1
15 Russell K C. Phase Transformations [M]. Ohio: American Society for Metals, 1968: 219
16 Kampmann R, Wagner R. Kinetics of precipitation in metastable binary alloys—Theory and application to Cu-1.9 at % Ti and Ni-14 at % Al [A]. Decomposition of Alloys: The Early Stages [M]. Oxford, U.K.: Pergamon Press, 1984: 91
17 Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20: 950
18 Perez M. Gibbs-Thomson effects in phase transformations [J]. Scr. Mater., 2005, 52: 709
19 Voorhees P W. The theory of Ostwald ripening [J]. J. Stat. Phys., 1985, 38: 231
20 Lifchitz I M, Slyosov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
21 Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [J]. Z. Elektrochem., 1961, 65: 581
22 Onsager L. Reciprocal relations in irreversible processes. I [J]. Phys. Rev., 1931, 37: 405
23 Ziegler H. Some extremum principles in irreversible thermodynamics with applications to continuum mechanics [A]. Progress in Solid Mechanics [M]. Amsterdam: North-Holland, 1963: 1
24 Ziegler H. An Introduction to Thermomechanics [M]. Amsterdam: North-Holland, 1977: 1
25 Fischer F D, Svoboda J, Petryk H. Thermodynamic extremal principles for irreversible processes in materials science [J]. Acta Mater., 2014, 67: 1
26 Hackl K, Fischer F D. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials [J]. Proc. Roy. Soc., 2008, 464A: 117
27 Fischer F D, Svoboda J. Thermodynamic treatment of diffusive phase transformation (reactive diffusion) [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 391
28 Svoboda J, Fischer F D, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory [J]. Mater. Sci. Eng., 2004, A385: 166
29 Kozeschnik E, Svoboda J, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: Numerical solution and application [J]. Mater. Sci. Eng., 2004, A385: 157
30 Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
31 Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. J. Phase Equilib. Diffus., 2009, 30: 517
32 Saunders N, Miodownik A P. CALPHAD: Calculation of Phase Diagrams: A Comprehensive Guide [M]. Berlin: Pergamon, 1998: 1
33 Kaufman L, Ågren J. CALPHAD, first and second generation—Birth of the materials genome [J]. Scr. Mater., 2014, 70: 3
34 Olson G B, Kuehmann C J. Materials genomics: From CALPHAD to flight [J]. Scr. Mater., 2014, 70: 25
35 Andersson J O, Ågren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. App. Phys., 1992, 72: 1350
36 Spencer P J. A brief history of CALPHAD [J]. Calphad, 2008, 32: 1
37 Zhang L J, Chen Q. CALPHAD—Type modeling of diffusion kinetics in multicomponent alloys [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 321
38 Thomson R C. Characterization of carbides in steels using atom probe field-ion microscopy [J]. Mater. Charact., 2000, 44: 219
39 Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels [J]. Acta Mater., 2005, 53: 519
40 Hu X B, Zhang M, Wu X C, et al. Simulations of coarsening behavior for M23C6 carbides in AISI H13 steel [J]. J. Mater. Sci. Technol., 2006, 22: 153
41 Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—An experimental and theoretical study [J]. Metall. Mater. Trans., 2001, 32A: 19
42 Bratberg J, Ågren J, Frisk K. Diffusion simulations of MC and M7C3 carbide coarsening in bcc and fcc matrix utilising new thermodynamic and kinetic description [J]. Mater. Sci. Technol., 2008, 24: 695
43 Sanhueza J P, Rojas D, Prat O, et al. Precipitation kinetics in a 10.5%Cr heat resistant steel: Experimental results and simulation by TC-PRISMA/DICTRA [J]. Mater. Chem. Phys., 2017, 200: 342
44 Li Y, Holmedal B, Li H X, et al. Precipitation and strengthening modeling for disk-shaped particles in aluminum alloys: Size distribution considered [J]. Materialia, 2018, 4: 431
45 Langer J S, Schwartz A J. Kinetics of nucleation in near-critical fluids [J]. Phys. Rev., 1980, 21A: 948
46 Zhao D D, Xu Y J, Gouttebroze S, et al. Modelling the age-hardening precipitation by a revised Langer and Schwartz approach with log-normal size distribution [J]. Metall. Mater. Trans., 2020, 51A: 4838
47 Kampmann R, Eckerlebe H, Wagner R. Precipitation kinetics in metastable solid solutions—Theoretical considerations and application to Cu-Ti alloys [J]. Mater. Res. Soc. Symp. Proc., 1987, 57: 525
48 Robson J D. Modelling the evolution of particle size distribution during nucleation, growth and coarsening [J]. Mater. Sci. Technol., 2004, 20: 441
49 Myhr O R, Ø Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
50 Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments [J]. Acta Mater., 2003, 51: 6077
51 Du Q, Poole W J, Wells M A. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys [J]. Acta Mater., 2012, 60: 3830
52 Hasting H S, Frøseth A G, Andersen S J, et al. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations [J]. J. Appl. Phys., 2009, 106: 123527
53 Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
54 Ohmori Y, Tamura I. Epsilon carbide precipitation during tempering of plain carbon martensite [J]. Metall. Trans., 1992, 23A: 2737
55 Holmedal B, Osmundsen E, Du Q. Precipitation of non-spherical particles in aluminum alloys part I: Generalization of the Kampmann-Wagner numerical model [J]. Metall. Mater. Trans., 2016, 47A: 581
56 Chen Q, Wu K S, Sterner G, et al. Modeling precipitation kinetics during heat treatment with calphad-based tools [J]. J. Mater. Eng. Perform., 2014, 23: 4193
57 Rojhirunsakool T, Meher S, Hwang J Y, et al. Influence of composition on monomodal versus multimodal γ′ precipitation in Ni-Al-Cr alloys [J]. J. Mater. Sci., 2013, 48: 825
58 Wang T L, Du J L, Liu F. Modeling competitive precipitations among iron carbides during low-temperature tempering of martensitic carbon steel [J]. Materialia, 2020, 12: 100800
59 Robson J D. Modelling the overlap of nucleation, growth and coarsening during precipitation [J]. Acta Mater., 2004, 52: 4669
60 Popov V V, Gorbachev I I, Pasynkov A Y. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation [J]. Philos. Mag., 2016, 96: 3632
61 Popov V V, Gorbachev I. Simulation of the evolution of precipitates in multicomponent alloys [J]. Phys. Met. Metallogr., 2003, 95: 417
62 Popov V V, Gorbachev I I, Alyabieva J A. Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei [J]. Philos. Mag., 2005, 85: 2449
63 Kozeschnik E, Svoboda J, Fischer F D. Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems [J]. Calphad, 2004, 28: 379
64 Cerjak H. Mathematical Modelling of Weld Phenomena 5 [M]. London: CRC Press, 2001: 349
65 Leitner H, Bischof M, Clemens H, et al. Precipitation behaviour of a complex steel [J]. Adv. Eng. Mater., 2006, 8: 1066
66 Shim J H, Povoden-Karadeniz E, Kozeschnik E, et al. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation [J]. J. Nucl. Mater., 2015, 462: 250
67 Kim M Y, Chu D J, Lee Y S, et al. Mechanical property change and precipitate evolution during long-term aging of 1.25Cr-0.5Mo steel [J]. Mater. Sci. Eng., 2020, A789: 139663
68 McDowell D L. Microstructure-sensitive computational structure-property relations in materials design [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 1
69 Chen W. High-throughput computing for accelerated materials discovery [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 169
70 Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
71 Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
72 Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
73 Fang C M, Van Huis M A, Zandbergen H W. Structure and stability of Fe2C phases from density-functional theory calculations [J]. Scr. Mater., 2010, 63: 418
74 Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The εηθ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60: 2805
75 Medvedeva N I, Van Aken D C, Medvedeva J E. Stability of binary and ternary M23C6 carbides from first principles [J]. Comput. Mater. Sci., 2015, 96: 159
76 Konyaeva M A, Medvedeva N I. Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe, Cr)3C and (Fe, Cr)7C3 [J]. Phys. Solid State, 2009, 51: 2084
77 Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite [J]. Acta Mater., 2010, 58: 6276
78 Liu Y Z, Jiang Y H, Xing J D, et al. Mechanical properties and electronic structures of M23C6 (M=Fe, Cr, Mn)-type multicomponent carbides [J]. J. Alloys Compd., 2015, 648: 874
79 Sanchez J M. Cluster expansions and the configurational energy of alloys [J]. Phys. Rev., 1993, 48B: 14013
80 van de Walle A, Asta M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams [J]. Modell. Simul. Mater. Sci. Eng., 2002, 10: 521
81 Wang Y, Hector L G, Zhang H, et al. Thermodynamics of the Ce γ-α transition: Density-functional study [J]. Phys. Rev., 2008, 78B: 104113
82 Wang Y, Hector L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism [J]. J. Phys.: Condens. Matter, 2009, 21: 326003
83 Fang C M, Sluiter M H F, van Huis M A, et al. Origin of predominance of cementite among iron carbides in steel at elevated temperature [J]. Phys. Rev. Lett., 2010, 105: 055503
84 Kaplan B, Blomqvist A, Århammar C, et al. Structural determination of (Cr, Co)7C3[A]. 18th Plansee Seminar [C]. Reutte, Austria, 2013: 1
85 Chen L Q. Phase-field models for microstructure evolution [J]. Annu. Rev. Mater. Res., 2002, 32: 113
86 Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
87 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
88 Wang Y Z, Li J. Phase field modeling of defects and deformation [J]. Acta Mater., 2010, 58: 1212
89 Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
90 Steinbach I. Phase-field models in materials science [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 073001
91 Xiong H, Huang Z H, Wu Z Y, et al. A generalized computational interface for combined thermodynamic and kinetic modeling [J]. Calphad, 2011, 35: 391
92 Philippe T, Erdeniz D, Dunand D C, et al. A phase-field study of the aluminizing of nickel [J]. Philos. Mag., 2015, 95: 935
93 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
94 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of precipitate microstructure evolution [J]. Phys. Rev. Lett., 2002, 88: 125503
95 Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: Wiley, 1983: 1
96 Kim K, Roy A, Gururajan M P, et al. First-principles/phase-field modeling of θ′ precipitation in Al-Cu alloys [J]. Acta Mater., 2017, 140: 344
97 Teichert G H, Natarajan A R, Van der Ven A, et al. Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions [J]. Comput. Methods Appl. Mech. Eng., 2019, 353: 201
98 Teichert G H, Natarajan A R, Van der Ven A, et al. Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys [J]. Comput. Methods Appl. Mech. Eng., 2020, 371: 113281
99 Zhang L, Chen L Q, Du Q. Diffuse-interface description of strain-dominated morphology of critical nuclei in phase transformations [J]. Acta Mater., 2008, 56: 3568
100 Boussinot G, Finel A, Le Bouar Y. Phase-field modeling of bimodal microstructures in nickel-based superalloys [J]. Acta Mater., 2009, 57: 921
101 Simmons J P, Shen C, Wang Y. Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events [J]. Scr. Mater., 2000, 43: 935
102 Vaithyanathan V, Chen L Q. Coarsening kinetics of δ′-Al3Li precipitates: Phase-field simulation in 2D and 3D [J]. Scr. Mater., 2000, 42: 967
103 Li Y S, Yu Y Z, Cheng X L, et al. Phase field simulation of precipitates morphology with dislocations under applied stress [J]. Mater. Sci. Eng., 2011, A528: 8628
104 Du J L, Zhang A, Zhang Y B, et al. Atomistic determination on stability, cluster and microstructures in terms of crystallographic and thermo-kinetic integration of Al-Mg-Si alloys [J]. Mater. Today Commun., 2020, 24: 101220
105 Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[10] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[11] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.