Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 831-839    DOI: 10.11900/0412.1961.2019.00447
  本期目录 | 过刊浏览 |
电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能
李师居1,2, 李洋1,2, 陈建强1, 李中豪1, 许光明1,2(), 李勇1, 王昭东1, 王国栋1
1.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field
LI Shiju1,2, LI Yang1,2, CHEN Jianqiang1, LI Zhonghao1, XU Guangming1,2(), LI Yong1, WANG Zhaodong1, WANG Guodong1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
引用本文:

李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
Shiju LI, Yang LI, Jianqiang CHEN, Zhonghao LI, Guangming XU, Yong LI, Zhaodong WANG, Guodong WANG. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. Acta Metall Sin, 2020, 56(6): 831-839.

全文: PDF(2573 KB)   HTML
摘要: 

采用OM、SEM、EMPA、DSC、电导率和常温拉伸性能测试等手段,分别对传统双辊铸轧及电磁双辊铸轧2种工艺条件下制备的2099Al-Li合金的微观组织及性能进行了深入研究,分析了双辊铸轧过程中的偏析产生机理及电磁振荡场的作用机制。结果表明:双辊铸轧工艺将连续铸造和轧制变形结合为一道工序,解决了传统铸造方法制备Al-Li合金因Li元素的加入而导致的严重缩孔等问题,但在铸轧板材中心存在宽度接近1 mm的宏观偏析带。在铸轧过程中施加电磁振荡场后,偏析带基本消除;二次枝晶臂间距缩减至6.90 μm;Cu、Zn、Mg元素的偏析度分别降低至2.45、0.93、1.05;合金中的非平衡共晶相含量显著降低。相较于双辊铸轧工艺,电磁双辊铸轧制备的2099Al-Li合金板材的抗拉强度、屈服强度、延伸率分别提升了34 MPa、18 MPa、2.8%,合金的力学性能得到大幅改善。

关键词 2099Al-Li合金双辊铸轧电磁振荡场偏析性能    
Abstract

Al-Li alloy has been widely applied in the fields of aircraft, aerospace and military applications due to its superior comprehensive properties. Al-Li alloy prepared by traditional casting process will have shrinkage porosities and gas holes defects due to the gas absorption of lithium element. Twin-roll casting (TRC) process combines continuous casting and rolling deformation into one process. The melt subjected to a certain rolling force during cooling and solidifying, compensates for the solidification shrinkage of liquid metal in the roll-casting region, hence solving the problems of porosity and other defects in Al-Li alloy. However, due to the wide solidification range of 2099Al-Li alloy, the central macro-segregation inevitably occurs in the sheets produced by TRC, which seriously deteriorates the mechanical properties of the sheets. How to eliminate segregation in aluminum alloys strips by adjusting the rolling parameters has been studied for decades. But the effect was not obvious and new approaches are required to solve this challenge. Introducing electromagnetic oscillation field in TRC process may be an effective way to solve the central segregation in TRC sheets. In this work, the OM, SEM, EMPA, DSC, conductivity and tensile test are employed to study the microstructure and properties of 2099Al-Li alloy prepared by TRC and electromagnetic TRC, respectively. The Lorentz force generated in the roll-casting region by applying electromagnetic oscillation field during TRC, which can break the dendrite and refine the solidification structure of the alloy. The central segregation band of the TRC sheet basically eliminated, and the segregation degree of Cu, Zn and Mg elements reduced to 2.45, 0.93 and 1.05. The macro-segregation and micro-segregation of sheets were effectively reduced. At the same time, the electromagnetic oscillation field can enhance the mixing ability of solute atoms, reduce the content of non-equilibrium eutectic phase and improve the supersaturated solid solubility of matrix. Compared with TRC sheet, the tensile strength, yield strength and elongation of 2099Al-Li alloy sheet prepared by ETRC increased by 34 MPa, 18 MPa and 2.8% respectively, hence the mechanical properties of the alloy sheet were greatly improved. This research work provides a new idea for the efficient preparation of Al-Li alloy with energy-saving, high-efficiency and green environmental protection.

Key words2099Al-Li alloy    twin-roll casting    electromagnetic oscillation field    segregation    property
收稿日期: 2019-12-14     
ZTFLH:  146.2  
基金资助:国家自然科学基金项目(51790485)
作者简介: 李师居,男,1993年生,博士生
图1  电磁双辊铸轧工艺示意图和电磁双辊铸轧工艺实物图
图2  不同工艺条件下制备的2099Al-Li合金的微观组织
图3  不同工艺条件下制备的2099Al-Li合金二次枝晶臂间距统计结果
图4  不同工艺条件下制备的2099Al-Li合金的微观组织及线扫描元素分布图
ProcessElementCmax / %Cmin / %C0 / %Se
TRCCu23.250.221.6314.13
Zn1.140.290.691.23
Mg0.430.150.211.33
Electromagnetic TRCCu1.590.220.562.45
Zn0.860.340.560.93
Mg0.340.120.211.05
表1  不同工艺条件制备的2099Al-Li合金EPMA特征位置上的元素含量
图5  不同工艺条件下2099Al-Li合金各元素偏析度
图6  不同工艺条件下制备的2099Al-Li合金的DSC曲线
图7  不同工艺条件下制备的2099Al-Li合金拉伸断口形貌
图8  带电粒子在电磁振荡场作用下的受力分析和枝晶碎断模型
[1] El-Aty A A, Xu Y, Zhang S H, et al. Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al-Li alloys sheet undergoing different strain rates and fibre orientation: A comparative study [J]. Procedia Eng., 2017, 207: 13
doi: 10.1016/j.proeng.2017.10.730
[2] Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337
[2] 郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337
[3] Wei X Y, Zheng Z Q, Li S C, et al. Heat resistant properties of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1417
doi: 10.1016/S1003-6326(07)60287-8
[3] 魏修宇, 郑子樵, 李世晨等. 2197铝锂合金的耐热性能 [J]. 中国有色金属学报, 2007, 17: 1417
[4] Jiang N, Gao X, Zheng Z Q. Microstructure evolution of aluminum-lithium alloy 2195 undergoing commercial production [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 740
doi: 10.1016/S1003-6326(09)60207-7
[5] El-Aty A A, Xu Y, Guo X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. J. Adv. Res., 2018, 10: 49
doi: 10.1016/j.jare.2017.12.004
[6] Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
[7] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
[8] Ma Y, Zhou X, Thompson G E, et al. Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion [J]. Mater. Chem. Phys., 2011, 126: 46
doi: 10.1016/j.matchemphys.2010.12.014
[9] De P S, Mishra R S, Baumann J A. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy [J]. Acta Mater., 2011, 59: 5946
doi: 10.1016/j.actamat.2011.06.003
[10] Kim M S, Kim S H, Kim H W. Deformation-induced center segregation in twin-roll cast high-Mg Al-Mg strips [J]. Scr. Mater., 2018, 152: 69
doi: 10.1016/j.scriptamat.2018.04.017
[11] Sun B Y. Theory and Technology of Strip Casting and Rolling [M]. Beijing: Metallurgical Industry Press, 2002: 25
[11] 孙斌煜. 板带铸轧理论与技术 [M]. 北京: 冶金工业出版社, 2002: 25
[12] Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 ℃ and 150 ℃ [J]. Mater. Sci. Eng., 1999, A270: 55
[13] Altenpohl D, Beck P. Aluminium und Aluminiumlegierungen [M]. Berlin: Springer Verlag, 1965: 45
[14] Li Y J, Arnberg L. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization [J]. Mater. Sci. Eng., 2003, A347: 130
[15] Li Y J, Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization [J]. Acta Mater., 2003, 51: 3415
doi: 10.1016/S1359-6454(03)00160-5
[16] Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: Mechanical Industry Press, 2000: 76
[16] 胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2000: 76
[17] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification [J]. Mater. Sci. Eng., 1997, A226-228: 763
[18] Wang D, Zhou C, Xu G J, et al. Heat transfer behavior of top side-pouring twin-roll casting [J]. J. Mater. Process. Technol., 2014, 214: 1275
doi: 10.1016/j.jmatprotec.2014.01.009
[19] Wang X D, Wang Z F, Liu Y, et al. A particle swarm approach for optimization of secondary cooling process in slab continuous casting [J]. Int. J. Heat Mass Transfer, 2016, 93: 250
[20] Sun K M, Li L, Chen S D, et al. A new approach to control centerline macrosegregation in Al-Mg-Si alloys during twin roll continuous casting [J]. Mater. Lett., 2017, 190: 205
doi: 10.1016/j.matlet.2016.12.109
[21] Su X, Xu G M, Jiang D H. Abatement of segregation with the electro and static magnetic field during twin-roll casting of 7075 alloy sheet [J]. Mater. Sci. Eng., 2014, A599: 279
[22] Zhang Q, Cui J Z, Lu G M, et al. Microstructure and solute distribution of 7075 alloy produced by semi-continuous casting under electromagnetic vibration [J]. Chin. J. Nonferrous Met., 2003, 13: 1184
[22] 张 勤, 崔建忠, 路贵民等. 电磁振荡法半连铸7075合金的微观组织及溶质元素分布 [J]. 中国有色金属学报, 2003, 13: 1184
[23] Su X, Wang S J, Ouyang X, et al. Physical and mechanical properties of 7075 sheets produced by EP electro- and electromagnetic cast rolling [J]. Mater. Sci. Eng., 2014, A607: 10
[24] Chen G, Li J T, Yin Z K, et al. Improvement of microstructure and properties in twin-roll casting 7075 sheet by lower casting speed and compound field [J]. Mater. Char., 2017, 127: 325
doi: 10.1016/j.matchar.2017.03.024
[25] Zhou Y H. Solidification Technology [M]. Beijing: Machinery Industry Press, 1988: 54
[25] 周尧和. 凝固技术 [M]. 北京: 机械出版社, 1998: 54
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[15] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.