Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 240-248    DOI: 10.11900/0412.1961.2019.00158
  研究论文 本期目录 | 过刊浏览 |
石墨烯纳米片增强镁基复合材料力学性能及增强机制
周霞1,2(),刘霄霞2
1. 大连理工大学工业装备结构分析国家重点实验室 大连 116024
2. 大连理工大学工程力学系  大连 116024
Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites
ZHOU Xia1,2(),LIU Xiaoxia2
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
全文: PDF(31802 KB)   HTML
摘要: 

采用分子动力学方法(MD)对单层石墨烯纳米片(GNPs)与单面及双面Ni包覆单层GNP (Ni-GNP、Ni-GNP-Ni)增强镁基复合材料(GNP/Mg、Ni-GNP/Mg、Ni-GNP-Ni/Mg)在单轴拉伸作用下的力学性能进行了研究,并与含有空位缺陷的双面Ni包覆单层GNP (Ni-defected GNP-Ni)及双面Ni包覆多层GNPs (Ni-nGNPs-Ni)增强镁基复合材料(Ni-defected GNP-Ni/Mg、Ni-nGNPs-Ni/Mg (n为GPNs层数))拉伸性能进行了对比。研究结果表明:GNPs的加入可以显著增强镁基复合材料的力学性能,与单晶Mg相比,GNP/Mg纳米复合材料在300 K及应变速率为1×109 s-1时的拉伸强度和弹性模量分别提高了32.60%和37.91%,而Ni-GNP-Ni/Mg的拉伸强度和弹性模量分别提高了46.79% 和54.53%;此外,Ni-defected GNP-Ni/Mg复合材料的弹性模量和拉伸强度较GNP/Mg有较大的提高,但其断裂应变提高的幅度较小;而Ni-GNP/Mg复合材料的拉伸强度和断裂应变较GNP/Mg有较大的提高,但其弹性模量提高的幅度较小。Ni-GNP-Ni/Mg基复合材料的弹性模量、拉伸强度和断裂应变随着温度的升高而降低,表现出了温度软化效应,但复合材料弹性模量的变化对温度不敏感。随着Ni-nGNPs-Ni中n的增加,即增强体体积分数增大时,复合材料弹性模量、拉伸强度及断裂应变均随之增大,复合材料表现出良好的综合力学性能。最后通过对原子结构演化的分析,发现Ni-GNP-Ni/Mg纳米复合材料的强化机制主要是界面强化、载荷的有效传递及位错强化。

关键词 石墨烯纳米片镁基复合材料分子动力学模拟力学性能增强机制    
Abstract

To improve the mechanical properties of Mg alloys and broaden their application fields, high performance Mg matrix nanocomposites have received more and more attention nowadays. Therefore, the research on the basic mechanical properties and strengthening mechanism of new Mg matrix composites at nanoscale has important theoretical and practical significance. The mechanical properties of pristine single-layer graphene nanoplatelets (GNPs) and single-side and double-side nickel-coated GNP (Ni-GNP, Ni-GNP-Ni) reinforced Mg composites (GNP/Mg, Ni-GNP/Mg, Ni-GNP-Ni/Mg) are studied under uniaxial tension by molecular dynamics (MD) simulations. Meanwhile, their tensile properties are also compared with those of double-side nickel-coated GNP with vacancy defects (Ni-defected GNP-Ni) and double-side nickel-coated multilayer GNPs (Ni-nGNPs-Ni) reinforced Mg-based composites. The simulated results show that the mechanical properties of Mg matrix composites are improved significantly by the addition of GNPs. Compared with single crystal Mg, the tensile strength and elastic modulus of GNP/Mg nanocomposites at 300 K and 1×109 s-1 are increased by 32.60% and 37.91%, respectively; while the tensile strength and elastic modulus of Ni-GNP-Ni/Mg composites are increased by 46.79% and 54.53%, separately. In addition, there is a larger increase in the elastic modulus and tensile strength but a smaller increase in the fracture strain for Ni-defected GNP-Ni/Mg composites, while there is a larger increase in the tensile strength and fracture strain but a smaller increase in the elastic modulus for Ni-GNP/Mg composites as compared with those of GNP/Mg composites. The elastic modulus, tensile strength and fracture strain of Ni-GNP-Ni/Mg composites decreases with increase in temperature, showing a temperature softening effect, but the variation in the elastic modulus of the composites is insensitive to temperature. With increasing of the layers or volume fractions of GNPs in Ni-nGNPs-Ni, the elastic modulus, tensile strength and fracture strain of the composites are all increased significantly, and the composites show excellent comprehensive mechanical properties. It is concluded that the main strengthening mechanisms for Ni-GNP-Ni/Mg nanocomposites are strong interface bonding, effective load transfer from the Mg matrix to the Ni-GNP-Ni and dislocation strengthening by analysis of the evolution of atomic structure.

Key wordsgraphene nanoplatelet    magnesium matrix composite    molecular dynamics simulation    mechanical property    strengthening mechanism
收稿日期: 2019-05-20     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目(11672055);国家自然科学基金项目(11272072)
通讯作者: 周霞     E-mail: zhouxia@dlut.edu.cn
Corresponding author: Xia ZHOU     E-mail: zhouxia@dlut.edu.cn
作者简介: 周 霞,女,1964年生,教授,博士

引用本文:

周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
Xia ZHOU, Xiaoxia LIU. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites. Acta Metall Sin, 2020, 56(2): 240-248.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00158      或      https://www.ams.org.cn/CN/Y2020/V56/I2/240

图1  不同石墨烯纳米片(GNPs)增强镁基复合材料模型
Interatomic interactionμ / eVR / nm
Mg—C0.00280.35015
Mg—Ni0.00240.2965
GNP—GNP0.002840.34
表1  L-J势函数参数[14,15,16]
图2  不同手性参数GNP的拉伸示意图
图3  不同手性参数的GNP和单晶Mg的拉伸应力-应变曲线
图4  GNP/Mg复合材料拉伸应力-应变曲线

Material

Volume fraction / %Elastic modulus GPaPeak stress GPaFracture stress GPa

Failure strain

GNPMg
Single crystal Mg0.0100.069.705.925.920.094
GNP/Mg3.296.896.127.853.610.182
Ni-GNP/Mg4.096.0102.328.404.360.188
Ni-GNP-Ni/Mg5.294.8107.718.695.240.176
Ni-defected GNP-Ni/Mg5.294.8107.058.374.720.126
表2  不同GNP/Mg复合材料与单晶Mg的力学性能
图5  不同温度下Ni-GNP-Ni/Mg的拉伸应力-应变曲线
图6  不同层数的GNPs/Mg复合材料的拉伸应力-应变曲线

Material

Volume fraction / %Elastic modulus GPaPeak stress GPaFracture stress GPa

Failure strain

GNPMg
Ni-GNP-Ni/Mg5.294.8107.718.695.240.176
Ni-3GNPs-Ni/Mg11.888.2161.3813.3111.860.187
Ni-5GNPs-Ni/Mg18.082.0211.2817.8918.950.192
表3  Ni-nGNPs-Ni/Mg复合材料各项力学性能
图7  基体和增强体拉伸应力-应变曲线
图8  单晶Mg和Ni-GNP-Ni/Mg复合材料中Mg基体在拉伸变形过程中的原子演化构形图
图9  复合材料中未包Ni和包覆Ni的GNP的拉伸变形演化过程
图10  GNP/Mg与Ni-GNP-Ni/Mg复合材料中位错的演化和分布
[1] Lu L, Lai M O, Froyen L. Structure and properties of Mg metal-metal composite [J]. Key Eng. Mater., 2002, 230-232: 287
[2] Dieringa H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: A review [J]. J. Mater. Sci., 2011, 46: 289
[3] Zhou X, Su D P, Wu C W, et al. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites [J]. J. Nanomater., 2012, 2012: 851862
[4] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666
[5] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single layer graphene [J]. Nano Lett., 2008, 8: 902
[6] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321: 385
[7] Lee C, Wei X D, Li Q Y, et al. Elastic and frictional properties of graphene [J]. Phys. Status Solidi, 2009, 246B: 2562
[8] Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. ACS Nano, 2009, 3: 3884
[9] Du X M, Zhen K F, Liu F G. Graphene reinforced magnesium matrix composites by hot pressed sintering [J]. Dig. J. Nanomater. Bios., 2018, 13: 827
[10] Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets [J]. Carbon, 2018, 127: 177
[11] Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
[12] Rong Y, He H P, Zhang L, et al. Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets [J]. Comp. Mater. Sci., 2018, 153: 48
[13] Rezaei R. Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites [J]. Comp. Mater. Sci., 2018, 151: 181
[14] Barfmal M, Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance [J]. Ceram. Int., 2017, 43: 17167
[15] Zhou X, Liu X X, Sansoz F, et al. Molecular dynamics simulation on temperature and stain rate-dependent tensile response and failure behavior of Ni-coated CNT/Mg composites [J]. Appl. Phys., 2018, 124A: 506
[16] Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2016, 50: 191
[17] LAMMPS simulation software program. LAMMPS Users Manual. 2003. 11 May 2018 version. URL:
[18] Li C Y, Browning A R, Christensen S, et al. Atomistic simulations on multilayer graphene reinforced epoxy composites [J]. Composites, 2012, 43A: 1293
[19] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
[20] Chen W, Fish J. A mathematical homogenization perspective of virial stress [J]. Int. J. Numer. Meth. Eng., 2006, 67: 189
[21] Sun D Y, Mendelev M I, Becker C A, et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg [J]. Phys. Rev., 2006, 73B: 024116
[22] Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472
[23] Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. Mechanical properties of carbon nanotubes with vacancies and related defects [J]. Phys. Rev., 2004, 70B: 245416
[24] Shibuta Y, Maruyama S. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube [J]. Comp. Mater. Sci., 2007, 39: 842
[25] He L C, Guo S S, Lei J C, et al. The effect of stone-thrower-wales defects on mechanical properties of graphene sheets—A molecular dynamics study [J]. Carbon, 2014, 75: 124
[26] Liang J H, Li H J, Qi L H, et al. Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy [J]. Mater. Sci. Eng., 2016, A678: 101
[27] Juneja A, Rajasekaran G. Effect of temperature and strain-rate on mechanical properties of defected graphene sheet: A molecular dynamics study [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 402: 012020
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[13] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[15] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.