Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1593-1605    DOI: 10.11900/0412.1961.2019.00064
  研究论文 本期目录 | 过刊浏览 |
静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响
马荣耀1,2,穆鑫1,刘博3,王长罡1,魏欣1,赵林1,董俊华1(),柯伟1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
3. 东北大学冶金学院 沈阳 110819
Effect of Hydrostatic Pressure on Corrosion Behavior of Ultra Pure Al Coupled with Ultra Pure Fe
MA Rongyao1,2,MU Xin1,LIU Bo3,WANG Changgang1,WEI Xin1,ZHAO Lin1,DONG Junhua1(),KE Wei1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

马荣耀, 穆鑫, 刘博, 王长罡, 魏欣, 赵林, 董俊华, 柯伟. 静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1593-1605.
MA Rongyao, MU Xin, LIU Bo, WANG Changgang, WEI Xin, ZHAO Lin, DONG Junhua, KE Wei. Effect of Hydrostatic Pressure on Corrosion Behavior of Ultra Pure Al Coupled with Ultra Pure Fe[J]. Acta Metall Sin, 2019, 55(12): 1593-1605.

全文: PDF(15766 KB)   HTML
摘要: 

采用动电位极化和电化学噪声方法在3.5%NaCl中研究了静水压力对超纯Al/超纯Fe电偶中超纯Al腐蚀行为的影响。利用离散小波变换去除噪声信号的直流漂移,然后进行散粒噪声和随机分析;利用Hilbert-Huang变换对噪声信号做时频分析;用SEM观察腐蚀试样的表面形貌;用有限元方法模拟压力分布。结果表明,不同静水压力下超纯Al在3.5%NaCl溶液中皆自钝化,与超纯Fe偶合后发生点蚀。随静水压力的升高,超纯Al/超纯Fe的电偶电位逐渐降低,电偶电流逐渐增大。静水压力越高,经电偶腐蚀后超纯Al表面形成的点蚀坑尺寸越小且分布更加均匀。静水压力的提高加速了电偶腐蚀中超纯Al的点蚀孕育速率,但抑制了点蚀生长概率,降低了局部腐蚀倾向。静水压力为常压时,点蚀可沿水平、竖直方向扩展;在静水压力存在的条件下,点蚀更易于沿水平方向扩展。

关键词 静水压力电偶腐蚀散粒噪声理论随机分析Hilbert-Huang变换有限元    
Abstract

Hydrostatic pressure was one of the critical factors affecting deep-sea corrosion. Theoretical research showed that increasing hydrostatic pressure could improve the activity of metal materials, increase the difference in activity between coupled metal materials, and aggravate the galvanic corrosion. At present, there were many researches on the corrosion behavior of metallic materials under hydrostatic pressure, but there were few researches on the influence of hydrostatic pressure on the corrosion behavior of metal materials. Due to the requirements of structure and performance in the marine environment, equipment components with different electrochemical properties must be connected. In such a harsh environment, galvanic corrosion would obviously accelerate. Therefore, it was very necessary to study the galvanic corrosion behavior of metallic materials under the condition of the deep sea. Fe-based alloys and Al-based alloys have been widely used in the marine environment, and there have been many studies on corrosion of Fe-based alloys and Al-based alloys in the deep-sea environment. As a result of single composition and structure, taking ultra-pure Al and ultra-pure Fe as the research object, the influence of phase, inclusion and other factors on corrosion behavior under hydrostatic pressure could be avoided, which was helpful to clarify the influence of hydrostatic pressure on corrosion behavior of ultrapure Al coupled with ultra-pure Fe. The influence of hydrostatic pressure on the corrosion behavior of ultrapure Al coupled with ultrapure Fe was studied in 3.5%NaCl using electrodynamic polarization and electrochemical noise. The discrete wavelet transform was utilized to remove the direct current drift of noise signal, and then the stochastic analysis based on the shot noise theory was carried out. The Hilbert-Huang transform was utilized to analyze the time-frequency characteristics of the noise signal. The surface morphology of corrosion samples was observed by SEM. The pressure distribution was simulated by finite element method. The results showed that the ultrapure Al was self-passivation in 3.5%NaCl solution under different hydrostatic pressures, pitting corrosion occurred after coupling with ultrapure Fe. With the increase of hydrostatic pressure, the galvanic potential of coupled ultrapure Al and ultrapure Fe decreased gradually, and the galvanic current increased gradually. The increase of hydrostatic pressure accelerated the pitting generation rate of ultrapure Al in galvanic corrosion, but inhibited the growth probability of pitting corrosion and reduced the tendency of local corrosion. When hydrostatic pressure was atmospheric, pitting corrosion could expand along the horizontal and vertical directions. In the presence of hydrostatic pressure, pitting corrosion was easier to expand along the horizontal direction.

Key wordshydrostatic pressure    galvanic corrosion    shot noise theory    stochastic analysis    Hilbert-Huang transform    finite element
收稿日期: 2019-03-11     
ZTFLH:  O646.6,TG171  
基金资助:国家重点研发计划项目(No.2017YFB0702302);国家自然科学基金项目(Nos.51671200);国家自然科学基金项目(51501204);国家自然科学基金项目(51801219)
作者简介: 马荣耀,男,1987年生,博士
图1  电偶电池的等效电路图
图2  模拟深海腐蚀电化学测试系统示意图
图3  0.1和10 MPa下在3.5%NaCl中超纯Al和超纯Fe的极化曲线
图4  不同静水压力下,经离散小波变换(DWT)去直流漂移前后超纯Al/超纯Fe电偶对在3.5%NaCl中的电偶电位噪声(EPN)谱
图5  不同静水压力下,经DWT去直流漂移前后超纯Al/超纯Fe电偶对在3.5%NaCl中的电偶电流噪声(ECN)谱
图6  不同静水压力下,在3.5%NaCl中超纯Al与超纯Fe偶合18000 s后表面腐蚀形貌的SEM像
图7  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中的噪声电阻(Rn)随时间的变化曲线和累积概率曲线
图8  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中的腐蚀事件发生频率(fn)和腐蚀事件平均电量(q)随时间的变化
图9  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中的fn的Weibull分布图

Pressure

MPa

Uniform corrosionPitting corrosion
mnmn
0.10.524512.53460.816512.4497
102.45890.62191.26812.2702
202.87060.07751.48780.7527
表1  不同静水压力下,由Weibull分布图的线性部分确定的超纯Al/超纯Fe电偶对在3.5%NaCl中的形状参数(m)和尺度参数(n)
图10  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中的均匀腐蚀孕育速率和点蚀孕育速率随浸泡时间的变化
图11  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中q的Gumbel分布图

Pressure

MPa

Metastable pittingStable pitting
αμ / Cαμ / C
0.13.82×10-54.29×10-56.83×10-53.63×10-5
106.09×10-69.77×10-61.31×10-51.91×10-6
202.38×10-64.83×10-64.42×10-64.43×10-6
表2  根据Gumbel分布图计算所得尺度参数(α)和位置参数(μ)
图12  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中腐蚀生长概率(Pc)随q的变化
图13  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中的噪声信号及其Hilbert谱
图14  不同静水压力下,超纯Al/超纯Fe电偶对在3.5%NaCl中噪声信号的Hilbert边际谱
图15  有限元模拟获得的静水压力对腐蚀形貌影响示意图
[1] Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
[1] (马荣耀, 赵 林, 王长罡等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281)
[2] Xing S H, Li Y, Wharton J A, et al. Effect of dissolved oxygen and coupled resistance on the galvanic corrosion of Cr-Ni low-alloy steel/90-10 cupronickel under simulated deep sea condition [J]. Mater. Corros., 2017, 68: 1123
[3] Li Q C, Yang J, Wu L, et al. Influence of pressure on galvanic corrosion of 907/921/B10 couples in simulated deep-sea environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6443
[4] Mansfeld F, Chen C, Lee C C, et al. The effect of asymmetric electrodes on the analysis of electrochemical impedance and noise data [J]. Corros. Sci., 1996, 38: 497
[5] Lowe A M, Eren H, Bailey S I. Electrochemical noise analysis: Detection of electrode asymmetry [J]. Corros. Sci., 2003, 45: 941
[6] Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52: 753
[7] Bertocci U, Gabrielli C, Huet F, et al. Noise resistance applied to corrosion measurements: I. Theoretical analysis [J]. J. Electrochem. Soc., 1997, 144: 31
[8] Bertocci U, Huet F. Noise resistance applied to corrosion measurements: III. Influence of the instrumental noise on the measurements [J]. J. Electrochem. Soc., 1997, 144: 2786
[9] Bautista A, Huet F. Noise resistance applied to corrosion measurements: IV. Asymmetric coated electrodes [J]. J. Electrochem. Soc., 1999, 146: 1730
[10] Bautista A, Bertocci U, Huet F. Noise resistance applied to corrosion measurements: V. Influence of electrode asymmetry [J]. J. Electrochem. Soc., 2001, 148: B412
[11] Cottis R A. The significance of electrochemical noise measurements on asymmetric electrodes [J]. Electrochim. Acta, 2007, 52: 7585
[12] Curioni M, Cottis R A, Di Natale M, et al. Corrosion of dissimilar alloys: Electrochemical noise [J]. Electrochim. Acta, 2011, 56: 6318
[13] Curioni M, Cottis R A, Di Natale M, et al. Electrochemical noise analysis on multiple dissimilar electrodes: Theoretical analysis [J]. Electrochim. Acta, 2011, 56: 10270
[14] Curioni M, Balaskas A C, Thompson G E. An alternative to the use of a zero resistance ammeter for electrochemical noise measurement: Theoretical analysis, experimental validation and evaluation of electrode asymmetry [J]. Corros. Sci., 2013, 77: 281
[15] Curioni M, Cottis R A, Thompson G E. Interpretation of electrochemical noise generated by multiple electrodes [J]. Corrosion, 2013, 69: 158
[16] Curioni M, Skeldon P, Thompson G E. Reliability of the estimation of polarization resistance of corroding electrodes by electrochemical noise analysis: Effects of electrode asymmetry [J]. Electrochim. Acta, 2013, 105: 642
[17] Astarita A, Curioni M, Squillace A, et al. Corrosion behaviour of stainless steel-titanium alloy linear friction welded joints: Galvanic coupling [J]. Mater. Corros., 2015, 66: 111
[18] Blasco-Tamarit E, Igual-Mu?oz A, García Antón J, et al. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions [J]. Corros. Sci., 2007, 49: 1000
[19] Sakairi M, Shimoyama Y, Takahashi H. Electrochemical noise analysis of galvanic corrosion of anodized aluminum in chloride environments [J]. Electrochemistry, 2006, 74: 458
[20] Sakairi M, Shimoyama Y. Electrochemical random signal analysis during galvanic corrosion of anodized aluminum alloy [J]. J. JSEM, 2007, 7(Spec. issue):114
[21] Monta?és M T, Sánchez-Tovar R, García-Antón J, et al. Influence of the flowing conditions on the galvanic corrosion of the copper/AISI 304 pair in lithium bromide using a zero-resistance ammeter [J]. Int. J. Electrochem. Sci., 2010, 5: 1934
[22] Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
[23] Gusmano G, Montesperelli G, Pacetti S, et al. Electrochemical noise resistance as a tool for corrosion rate prediction [J]. Corrosion, 1997, 53: 860
[24] Cottis R A. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265
[25] Ma R Y, Wang C G, Mu X, et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe [J]. Acta Metall. Sin., 2019, 55: 859
[25] (马荣耀, 王长罡, 穆 鑫等. 静水压力对超纯Fe腐蚀行为的影响 [J]. 金属学报, 2019, 55: 859)
[26] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [A]. Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing [C]. Grado, Italy: IEEE, 2003: 8
[27] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank [J]. IEEE Signal Process. Lett., 2004, 11: 112
[28] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 105
[28] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 105)
[29] Shao Y W, Huang H, Zhang T, et al. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline [J]. Corros. Sci., 2009, 51: 2906
[30] Cao F H, Zhang Z, Su J X, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359
[31] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1: 266
[32] Dong Z H, Guo X P, Zheng J S, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3: 561
[33] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
[34] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[35] Cai C, Zhang Z, Cao F H, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. J. Electroanal. Chem., 2005, 578: 143
[36] Homborg A M, van Westing E P M, Tinga T, et al. Novel time-frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97
[37] Homborg A M, Tinga T, Zhang X, et al. Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steel [J]. Electrochim. Acta, 2013, 104: 84
[38] Zhao B, Li J H, Hu R G, et al. Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J]. Electrochim. Acta, 2007, 52: 3976
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[3] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[6] 王霞, 王维, 杨光, 王超, 任宇航. 激光沉积薄壁结构热力演化的尺寸效应[J]. 金属学报, 2020, 56(5): 745-752.
[7] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[9] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[10] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[11] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[12] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[13] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[14] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[15] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.