Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 928-938    DOI: 10.11900/0412.1961.2018.00380
  本期目录 | 过刊浏览 |
双相钛合金高温变形协调性的CPFEM研究
李学雄1,2,徐东生1(),杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy
Xuexiong LI1,2,Dongsheng XU1(),Rui YANG1
1. Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(13091 KB)   HTML
摘要: 

基于率相关滑移为主的晶体塑性本构模型,结合Voronoi方法创建双相多晶体集合,研究不同组织特征的Ti-6Al-4V合金的高温变形行为,重点关注双相组织中应力、应变空间分布特征及其演化,应力、应变相间分配,并提出一种变形协调性定量评估方法。结果表明,多晶变形过程中,晶界及其附近是变形的优先响应区域;β晶粒与α晶粒之间存在包围结构特征可加剧局域应变的差异分配;晶粒长短轴比越大,周围异相界面越多,则其局域变形协调性越低。αβ相应力频率统计呈双峰形态,α相中平均应变较高,而β相中应力较高。随α相体积分数增加,拉伸屈服强度和应力协调系数降低,而应变协调系数先降低后升高。随α基面织构体积分数增加,拉伸屈服强度和加工硬化率升高,且应力协调系数升高,而应变协调系数先降低后升高。

关键词 双相钛合金Voronoi晶体塑性有限元法应力应变分配变形协调性    
Abstract

Based on the rate-dependent crystal plasticity constitutive model considering all slip systems, a series of dual-phase polycrystalline models were established using 3D Voronoi tessellation to investigate the high temperature plastic deformation of Ti-6Al-4V alloy with different microstructure features. The spatial distributions and evolution of stress and strain in various grains and phases were calculated in detail, and a new method was proposed to evaluate quantitatively the deformation consistency in the alloy with two phases. Simulations show that grain boundary region responds preferentially in the early stage of deformation. The encircling structure formed between β and α grains can enhance the differences in the local strain distribution. Increasing the aspect ratio of grains and the fractions of heterogeneous phase interface can reduce the local compatibility of deformation. The stress frequency statistics of both α and β phases show a double peak form, with α phase higher in average strain, and β phase higher in stress distribution. Increasing of the volume fractions of α phase may reduce the tensile yield strength, and cause the stress consistency coefficient to decrease, while the strain consistency coefficient decreases first and then increases. As initial α-basal texture intensity increases, both tensile yield strength and stress consistency coefficient increase, while the strain consistency coefficient decreases first and then increases.

Key wordsdual-phase titanium alloy    Voronoi    crystal plasticity finite element method (CPFEM)    distribution of micro stress and strain    deformation compatibility
收稿日期: 2018-08-17     
ZTFLH:  TG113.25  
基金资助:国家重点研发计划项目(No.2016YFB0701304);中国科学院信息化专项课题项目(No.XXH13506-3040);中国科学院战略先导科技专项项目(No.XDC01040100)
通讯作者: 徐东生     E-mail: dsxu@imr.ac.cn
Corresponding author: Dongsheng XU     E-mail: dsxu@imr.ac.cn
作者简介: 李学雄,男,1987年生,博士生

引用本文:

李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
Xuexiong LI, Dongsheng XU, Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy. Acta Metall Sin, 2019, 55(7): 928-938.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00380      或      https://www.ams.org.cn/CN/Y2019/V55/I7/928

图1  双相钛合金多晶几何构型图
PhaseSlip system typeγ˙0nqh0 / MPaτ0 / MPaτs / MPa

α-Ti

<a>0.0016.251120.08.218.0
<c+a>0.0016.251120.082.0180.0
β-Ti0.00112.51143.184.396.5
表1  Ti-6Al-4V晶体塑性本构模型参数(750 ℃)[24,25,26,27]
图2  含50% (体积分数) α相的双相钛合金的多晶构形及750 ℃高温拉伸变形云图
图3  局部晶粒结构及750 ℃高温变形云图
图4  750 ℃、20%拉伸时部分晶粒高温变形后滑移开动应变统计
图5  双相钛合金应力、应变频率统计图
图6  不同α相含量的双相钛合金的750 ℃高温拉伸应力-应变曲线
图7  750 ℃、20%拉伸时α相含量对平均应变、应力及其协调系数的影响
图8  不同基面织构体积分数的双相钛合金(50%α)的高温(750 ℃)拉伸应力-应变曲线
图9  含50%α的双相钛合金在750 ℃、20%拉伸时不同基面织构体积分数下的平均应变、应力和协调系数
[1] Lütjering G, Williams J C. Titanium [M]. 2nd Ed. New York: Springer, 2007: 251
[2] Huang B Y, Li C G, Shi L K, et al. Dictionary for Material [M]. Beijing: Chemical Industry Press, 2006: 585
[2] (黄伯云, 李成功, 石力开等. 中国材料工程大典 [M]. 北京: 化学工业出版社, 2006: 585)
[3] Warwick J L W. Texture, microstructure and deformation mechanism in titanium alloys [D]. London: Imperial College London, 2013
[4] Britton T B, Liang H, Dunne F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations [J]. Proc. Roy. Soc., 2010, 466A: 695
[5] Wilkinson A J, Clarke E E, Britton T B, et al. High-resolution electron backscatter diffraction: An emerging tool for studying local deformation [J]. J. Strain Anal. Eng. Des., 2010, 45: 365
[6] Tamura I, Tomota Y, Yamaoka Y, et al. The Strength and ductility of two-phase iron alloys [J]. Tetsu Hagané, 1973, 59: 454
[6] (田村 今男, 友田 陽, 山岡 幸男等. 二相混合組織をもつ鉄合金の強度と延性について [J]. 鉄と鋼, 1973, 59: 454
[7] Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J]. Int. J. Plast., 2011, 27: 1833
[8] Katani S, Madadi F, Atapour M, et al. Micromechanical modelling of damage behaviour of Ti-6Al-4V [J]. Mater. Des., 2013, 49: 1016
[9] Neti S, Vijayshankar M N, Ankem S. Finite element method modeling of deformation behavior of two-phase materials part I: Stress-strain relations [J]. Mater. Sci. Eng., 1991, A145: 47
[10] Zang X L, Zhao X Q, Joongkeun P, et al. Numerical simulation on distribution of micro stress-strain in dual-phase titanium alloys [J]. Rare Met. Mater. Eng., 2009, 38: 1058
[10] (臧新良, 赵希庆, Joongkeun P等. 双相钛合金微观应力-应变分布的数值模拟 [J]. 稀有金属材料与工程, 2009, 38: 1058)
[11] Kuang S, Kang Y L, Yu H, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16: 393
[12] Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
[13] Tang B, Xie S, Liu Y, et al. Crystal plasticity finite element study of incompatible deformation behavior in two phase microstructure in near β titanium alloy [J]. Rare Met. Mater. Eng., 2015, 44: 532
[14] Asaro R J, Needleman A. Overview no.42 Texture development and strain hardening in rate dependent polycrystals [J]. Acta Metall., 1985, 33: 923
[15] Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metall., 1982, 30: 1087
[16] Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. J. Mech. Phys. Solids, 1966, 14: 95
[17] Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids, 1972, 20: 401
[18] Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc. Roy. Soc., 1976, 348A: 101
[19] Bassani J L, Wu T Y. Latent hardening in single crystals. II. Analytical characterization and predictions [J]. Proc. Roy. Soc., 1991, 435A: 21
[20] Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
[21] Salkind N J. Encyclopedia of Research Design [M]. Thousand Oaks, Calif: SAGE, 2010: 170
[22] Quey R, Dawson P R, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing [J]. Comput. Methods Appl. Mech. Eng., 2011, 200: 1729
[23] Si L Y, Deng G Y, Lv C, et al. Polycrystal geometry modeling of crystal plasticity finite element method with Voronoi diagram [J]. J. Mater. Metall., 2009, 8: 193
[23] (司良英, 邓关宇, 吕 程等. 基于Voronoi图的晶体塑性有限元多晶几何建模 [J]. 材料与冶金学报, 2009, 8: 193)
[24] Balasubramanian S, Anand L. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: Application to titanium [J]. Acta Mater., 2002, 50: 133
[25] Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties [M]. 2nd Ed., Cambridge: The MIT Press, 1971: 199
[26] Ogi H, Kai S, Ledbetter H, et al. Titanium's high-temperature elastic constants through the hcp-bcc phase transformation [J]. Acta Mater., 2004, 52: 2075
[27] Duan Y P. Research on mesoscopic research and simulation on hot deformation microstructure in TB8 alloy [D]. Hefei: Hefei University of Technology, 2009
[27] (段园培. TB8合金热变形组织介观尺度研究与模拟 [D]. 合肥: 合肥工业大学, 2009)
[28] Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086
[28] (马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086)
[29] Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si alloy [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1): s588
[29] (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(专辑1): s588)
[30] Gu X Y, Xu D S, Wang H, et al. Lattice weakening by edge dislocation core under tension [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 065004
[31] Wu H N, Xu D S, Wang H, et al. Molecular dynamics simulation of tensile deformation and fracture of γ-TiAl with and without surface defects [J]. J. Mater. Sci. Technol., 2016, 32: 1033
[32] Wang H, Xu D S, Yang R. Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure [J]. Modell. Simul. Mater. Sci. Eng., 2014, 22: 085004
[33] Peters M, Gysler A, Lütjering G. Influence of texture on fatigue properties of Ti-6Al-4V [J]. Metall. Mater. Trans., 1984, 15A: 1597
[34] Peters M, Luetjering G. Control of microstructure and texture in Ti-6Al-4V alloy [A]. Titanium'80, Science and Technology: Proceedings of the Fourth International Conference on Titanium [C]. Warrendale, PA: TMS, 1980: 925
[35] Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy [J]. Mater. Sci. Eng., 2001, A319: 409
[36] Paton N E, Backofen W A. Plastic deformation of Titanium at elevated temperatures [J]. Metall. Trans., 1970, 1: 2839
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[3] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[4] 李彦默, 刘晨曦, 余黎明, 李会军, 王祖敏, 刘永长, 李文亚. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报, 2018, 54(7): 981-990.
[5] 刘梦莹, 常海, 徐锋, 许正芳, 杨昭, 王宁, 甘为民, 冯强. 冷床炉熔炼TC1合金轧制过程中组织演变与力学性能*[J]. 金属学报, 2015, 51(3): 341-348.
[6] 都贝宁, 杨金侠, 崔传勇, 孙晓峰. 晶粒细化对K417G高温合金蠕变性能的影响[J]. 金属学报, 2014, 50(11): 1384-1392.
[7] 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*[J]. 金属学报, 2014, 50(2): 226-230.
[8] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[9] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
[10] 贺志荣 王启 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响[J]. 金属学报, 2012, 48(1): 56-62.
[11] 白清顺 童振 梁迎春 陈家轩 王治国. 单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟[J]. 金属学报, 2010, 46(10): 1173-1180.
[12] 刘庆冬 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 II. 长大[J]. 金属学报, 2009, 45(11): 1288-1296.
[13] 刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.
[14] 赵远云 王宝全 郭敬东. 高密度脉冲电流处理改善1Cr13Mn13钢力学性能[J]. 金属学报, 2009, 45(11): 1325-1329.
[15] 贾玉贤 金涛 刘金来 孙晓峰 胡壮麒. 一种镍基单晶高温合金的蠕变各向异性[J]. 金属学报, 2009, 45(11): 1364-1369.