Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1329-1337    DOI: 10.11900/0412.1961.2019.00020
  本期目录 | 过刊浏览 |
SiC/2009Al复合材料的变形加工参数的优化仿真研究
马凯1,2,张星星1,王东1,王全兆1,刘振宇1,肖伯律1(),马宗义1
1. 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites
MA Kai1,2,ZHANG Xingxing1,WANG Dong1,WANG Quanzhao1,LIU Zhenyu1,XIAO Bolv1(),MA Zongyi1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
Kai MA, Xingxing ZHANG, Dong WANG, Quanzhao WANG, Zhenyu LIU, Bolv XIAO, Zongyi MA. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. Acta Metall Sin, 2019, 55(10): 1329-1337.

全文: PDF(14159 KB)   HTML
摘要: 

对粉末冶金法制备的15%SiC (体积分数)/2009Al复合材料热变形参数的仿真优化方法进行了探讨。通过热压缩实验获得复合材料的动态真应力-真应变曲线,由此建立了最大应变量下应变速率敏感指数(m)分布图。在不同m值对应的变形参数下,对复合材料的热压缩过程进行有限元模拟,分析了热压缩样品的流变应力、应变、危险系数分布等,结合微观组织验证了以m作为评价复合材料加工参数依据的可靠性,并由此确定15%SiC/2009Al复合材料的最佳热变形参数所对应的变形温度和应变速率分别为500 ℃和0.01 s-1

关键词 铝基复合材料热变形本构方程有限元模拟    
Abstract

Particle reinforced aluminum matrix composites (PRAMCs) have the advantages of high specific strength and high specific modulus, and are important engineering materials for aerospace field. However, due to the huge difference in the mechanical properties between the reinforcements and the aluminum matrixes, the plastic forming of PRAMCs is quite difficult, which restricts their wide engineering applications. In order to improve the quality of plastic processing, it is necessary to optimize deformation parameters of PRAMCs. In this study, the hot deformation parameters of a 15%SiC/2009Al composite fabricated by powder metallurgy were optimized using a simulation method. Firstly, true stress-strain curves of the SiC/2009Al composite were obtained through hot compression tests, and then the strain rate sensitivity index (m) map at the ultimate strain was established. Under the deformation parameters corresponding to various m values, the finite element simulation of the hot compression process was carried out. The flow stress, strain and damage coefficient distribution of the hot-compressed samples were analyzed. The results show that it is reliable to use the m value as the basis for optimizing the processing parameters, which were further verified by the microstructural observations. The deformation temperature and strain rate corresponding to the optimum parameters of the composite were determined to be 500 ℃ and 0.01 s-1, respectively.

Key wordsaluminum matrix composite    hot deformation    constitutive equation    finite element simulation
收稿日期: 2019-01-24     
ZTFLH:  TG319  
基金资助:国家重点研发计划(2017YFB0703104);国家自然科学基金面上项目(51871214);国家自然科学基金委员会-辽宁省政府联合基金重点项目(U1508216)
作者简介: 马 凯,男,1994年生,博士生
图1  有限元模拟几何模型
图2  15%SiC/2009Al复合材料的真应力-真应变曲线
图3  15%SiC/2009Al复合材料的应变速率敏感系数(m)随变形参数的分布
图4  15%SiC/2009Al复合材料的门槛应力(σth)随温度变化
图5  15%SiC/2009Al复合材料在不同变形参数下的等效应力场、最大主应力场和等效应变场分布图
图6  15%SiC/2009Al复合材料不同变形参数下的等效应变量随试样位置变化
图7  15%SiC/2009Al复合材料压缩变形时的危险系数(D)
图8  15%SiC/2009Al复合材料压缩变形试样中的SiC分布
图9  15%SiC/2009Al复合材料变形参数为500 ℃、0.01 s-1、真应变(ε)为1.0时的危险系数模拟结果
[1] Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39(1): 1
[2] Tjong S C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties [J]. Adv. Eng. Mater., 2007, 9: 639
[3] Ramnath B V, Elanchezhian C, Annamalai R M ,et al. Aluminium metal matrix composites—A review [J]. Rev. Adv. Mater. Sci., 2014, 38: 55
[4] Tham L M, Gupta M, Cheng L. Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites [J]. Mater. Sci. Eng., 2002, A326: 355
[5] Li H Z, Wang H J, Zeng M ,et al. Forming behavior and workability of 6061/B4CP composite during hot deformation [J]. Compos. Sci. Technol., 2011, 71: 925
[6] Liu Z Y, Wang Q Z, Xiao B L, et al. Effects of double extrusion on the microstructure and tensile property of the PM processed SiCp/2009Al composites [J]. Acta Metall. Sin., 2010, 46: 1121
[6] (刘振宇, 王全兆, 肖伯律等. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响 [J]. 金属学报, 2010, 46: 1121)
[7] Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
[7] (肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
[8] Kim H Y, Hong S H. High temperature deformation behavior of 20vol.% SiCw2024Al metal matrix composite [J]. Scr. Metall. Mater., 1994, 30: 297
[9] Huang H Y, Fan G L, Tan Z Q ,et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy [J]. Mater. Sci. Eng., 2017, A699: 55
[10] Mabuchi M, Higashi K, Inoue K ,et al. Experimental investigation of superplastic behavior in a 20vol% Si3N4p5052 aluminum composite [J]. Scr. Mater., 1992, 26: 1839
[11] Huang Z Y, Zhang X X, Xiao B, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite [J]. J. Alloys Compd., 2017, 722: 145
[12] Shao J C, Xiao B L, Wang Q Z ,et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20vol.%SiCP/2024Al composite [J]. Mater. Sci. Eng., 2010, A527: 7865
[13] Mokdad F, Chen D L, Liu Z Y ,et al. Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite [J]. Mater. Sci. Eng., 2017, A702: 425
[14] Kai X Z, Zhao Y T, Wang A D ,et al. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite [J]. Compos. Sci. Technol., 2015, 116: 1
[15] Kim W J. The size effect of SiC particulates on activation energy for superplastic flow in a 2124 Al metal matrix composite [J]. Scr. Mater., 1999, 41: 1131
[16] Shi C J, Chen X G. Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions [J]. Mater. Sci. Eng., 2016, A650: 197
[17] Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol% SiCp/2014Al composite [J]. J. Alloys Compd., 2018, 743: 87
[18] Zhang Z J, Dai G Z, Wu S N ,et al. Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D [J]. Mater. Sci. Eng., 2009, A499: 49
[19] Sornin D, Karch A, Nunes D. Finite element method simulation of the hot extrusion of a powder metallurgy stainless steel grade [J]. Int. J. Mater. Forming, 2015, 8: 145
[20] Chen J F, Yan M F, Wang X R. 3D FEM simulation of hot extrusion process of AerMet100 steel [J]. Trans. Mater. Heat Treat., 2007, 28(S1): 367
[20] (陈俊锋, 闫牧夫, 汪向荣. AerMet100钢热挤压变形过程数值模拟 [J]. 材料热处理学报, 2007, 28(S1): 367)
[21] Zhou L, Huang Z Y, Wang C Z ,et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite [J]. Mech. Mater., 2016, 93: 32
[22] Zhou L, Wang C Z, Zhang X X ,et al. Finite element simulation of hot rolling process for SiCp/Al composites [J]. Acta Metall. Sin., 2015, 51: 889
[22] (周 丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟 [J]. 金属学报, 2015, 51: 889)
[23] Liu Y, Shao J C, Ding L ,et al. Finite element simulation and analysis of 12 vol%SiCP/2024Al matrix composites for hot extrusion process [J]. Acta. Mater. Compos. Sin., 2009, 26(5): 167
[23] (刘 越, 邵军超, 丁 莉等. 12vol%SiCP/2024Al基复合材料热挤压过程有限元模拟与分析 [J]. 复合材料学报, 2009, 26(5): 167)
[24] Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627
[25] McQueen H J, Blum W. Dynamic recovery: Sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng., 2000, A290: 95
[26] Sun Y L, Xie J P, Hao S M ,et al. Dynamic recrystallization model of 30%SiCp/Al composite [J]. J. Alloys Compd., 2015, 649: 865
[27] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
[28] Kim W J, Hong S H. High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy [J]. J. Mater. Sci., 2000, 35: 2779
[29] Du N N, Bower A F, Krajewski P E, et al. The influence of a threshold stress for grain boundary sliding on constitutive response of polycrystalline Al during high temperature deformation [J]. Mater. Sci. Eng., 2008, A494: 86
[30] Lagneborg R, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys [J]. Met. Sci., 1976, 10: 20
[31] Kaibyshev R, Kazyhanov V, Musin F. Hot plastic deformation of aluminium alloy 2009-15%SiCw composite [J]. Mater. Sci. Technol., 2002, 18: 777
[32] Mishra R S, Bieler T R, Mukherjee A K. Mechanism of high strain rate superplasticity in aluminium alloy composites [J]. Acta Mater., 1997, 45: 561
[33] Wierzbicki T, Bao Y B, Lee Y W, et al. Calibration and evaluation of seven fracture models [J]. Int. J. Mech. Sci., 2005, 47: 719
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[4] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[5] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[6] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[10] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[11] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[14] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[15] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.