Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1433-1440    DOI: 10.11900/0412.1961.2020.00060
  本期目录 | 过刊浏览 |
Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响
姜霖1,2, 张亮1,3, 刘志权1,2,4()
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 江苏师范大学机电工程学院 徐州 221116
4 中国科学院深圳先进技术研究院先进电子材料国际创新研究院 深圳 518055
Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly
JIANG Lin1,2, ZHANG Liang1,3, LIU Zhiquan1,2,4()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
4 Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
引用本文:

姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
Lin JIANG, Liang ZHANG, Zhiquan LIU. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. Acta Metall Sin, 2020, 56(10): 1433-1440.

全文: PDF(1448 KB)   HTML
摘要: 

针对靶材背板扩散焊Co/Al/Cu三明治结构,采用有限元法研究了Al中间层和Ni(V)过渡层对其焊接残余应力的影响。结果表明,Al中间层的存在,不仅能使扩散焊过程更容易进行,降低扩散焊温度,同时也能缓解焊接残余应力,使靶材背板扩散焊组件最大残余应力从142 MPa降低到126 MPa,最大残余应力的位置也从靶材外边缘和背板的界面处变为靠近靶材中心和Co/Al界面处,并且存在厚度为7 mm的最优中间层。Ni(V)过渡层的存在虽然能够抑制Co/Al和Cu/Al界面处脆性金属间化合物的生成,但同时也使焊接残余应力增大,并且只在Co/Al界面处添加Ni(V)过渡层时残余应力的增大程度小于在Co/Al和Cu/Al界面处都添加Ni(V)过渡层时的残余应力的增大程度。

关键词 扩散焊Al中间层Ni(V)过渡层焊接残余应力Co靶材有限元模拟    
Abstract

Sputtering has been widely used to prepare thin film due to its good cohesion with substrate, high purity, compactness, repeatability and large area manufacture. Target is a key consumable material during production of thin film by sputtering. Generally, targets are mostly rare and high purity metal, so the cost of target is very high. In order to reduce the cost of target, to improve its stiffness, and to enhance the electrical and thermal conductivity, target is usually connected with backplane to form the target assembly. The main connection method is diffusion welding, which is used in the industrial production. However, the target and the backplane are usually two different materials with different physical properties such as coefficient of thermal expansion (CTE) and thermal conductivity. During the welding or soldering process of target, the mismatch of physical properties will lead to residual stress in target, which has a direct influence on the thickness and microstructure uniformity of the films. Hence, it is very meaningful to investigate the residual stress in target and to study its influencing factor. Based on the Co/Al/Cu sandwich structure of backplane diffusion welding, the effects of Al interlayer and Ni(V) layer on welding residual stress were studied by finite element method. It was found that the application of the Al interlayer not only can make diffusion welding process easier and lower the diffusion welding temperature, but also can reduce the maximum residual stress from 142 MPa to 126 MPa. Furthermore, the location of the maximum residual stress also changes from the outer edge of the interface between target and backplane to the position near the symmetrical axis of target and Co/Al interface. Furthermore, there is an optimal thickness for Al interlayer (7 mm). Although the existence of Ni(V) layer can inhibit the generation of brittle intermetallic compounds at the interface of Co/Al and Cu/Al, it also increases the residual stress. Moreover, we find that the increase of residual stress with Ni(V) layer at only Co/Al interface, is smaller than that of adding Ni(V) layer at both Co/Al and Cu/Al interfaces.

Key wordsdiffusion welding    Al interlayer    Ni(V) transition layer    welding residual stress    Co target    finite element simulation
收稿日期: 2020-02-24     
ZTFLH:  TG404  
基金资助:国家重点研发计划重点专项项目(2017YFB0305501)
作者简介: 姜 霖,男,1990年生,硕士
MaterialMaterial modelRadius / mmThickness / mmThermal elementStructural element
Co targetElasticity452.3Plane 77Plane 82
Cu backplaneElasticity507.4Plane 77Plane 82
Al interlayerElastoplasticity451.5Plane 77Plane 82
Ni(V) layerElastoplasticity450.1Plane 77Plane 82
表1  靶材背板组件的材料模型尺寸和分析单元
Material

Thermal conductivity

W·m-1·K-1

Elastic modulus

GPa

Density

kg·m-3

c

J·kg-1·K-1

α

10-6 K-1

ν
Co target89.5211.0885047313.90.32
Cu backplane369.0128.0888939016.50.34
Al interlayer238.070.6270090023.80.33
Ni(V) layer76.5199.0891057414.90.33
表2  靶材背板组件材料的物理性能
图1  靶材背板组件几何模型
图2  靶材背板组件有限元模型
图3  切割前后靶材背板组件外形和残余应力测试点位置
图4  有无Al中间层对扩散焊残余应力的影响
图5  Al中间层厚度对靶材背板组件最大残余应力的影响
Case

Thickness of Al

interlayer / mm

Thickness of Ni(V) layer at

Co/Al interface / mm

Thickness of Ni(V) layer at

Cu/Al interface / mm

Maximum residual

stress / MPa

I400124.7
II40.30128.7
III40.30.3136.9
表3  Ni(V)过渡层对靶材背板组件最大残余应力的影响
图6  Ni(V)过渡层对靶材背板组件残余应力影响
图7  靶材背板组件残余应力分布
图8  靶材背板组件表面径向残余应力的实验测量结果和有限元模拟结果
图9  靶材背板组件表面切向残余应力的实验测量结果和有限元模拟结果
[1] Martens S, Mack W, Courtade F, et al. Laser-based target preparation in 3D integrated electronic packages [J]. J. Electron. Packag., 2009, 131: 031006
doi: 10.1115/1.3144157
[2] Huang D S, Tu W B, Zhang X M, et al. Using Taguchi method to obtain the optimal design of heat dissipation mechanism for electronic component packaging [J]. Microelectron. Reliab., 2016, 65: 131
[3] Huang M L, Yang F. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J]. Sci. Rep., 2014, 4: 7117
[4] Takahashi K, Hoshino M, Yonemura H, et al. Development of advanced 3D chip stacking technology with ultra-fine interconnection [A]. 2001 Proceedings. 51st Electronic Components and Technology Conference [C]. Orlando, FL, USA: IEEE, 2001: 541
[5] Ge Z P, Wang K K. Optimization of structure for BGA packaging based on Taguchi method [A]. 2015 16th International Conference on Electronic Packaging Technology (ICEPT) [C]. Changsha: IEEE, 2015: 1433
[6] Lai L F, Wang J X, Wang H T, et al. Structures and properties of C-doped NiCr thin film deposited by closed-field unbalanced magnetron sputtering [J]. J. Electron. Mater., 2017, 46: 552
[7] Lin Y P, Hsieh T E, Chen Y C, et al. Characteristics of Cu2ZnSn (SxSe1-x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment [J]. Sol. Energy Mater. Sol. Cells, 2017, 162: 55
[8] Shih C W, Chin A, Lu C F, et al. Remarkably high hole mobility metal-oxide thin-film transistors [J]. Sci. Rep., 2018, 8: 889
[9] Zeng Y, Liang G X, Fan P, et al. The structural, optical and thermoelectric properties of single target sputtered Cu2-ZnSn-(S, Se)4 thin film [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 13763
[10] Ling Q. Investigation of manufacture of TiO2 target (Nb2O5) and its performance [D]. Shenzhen: Shenzhen University, 2017
[10] (凌 奇. Nb2O5掺杂TiO2靶材的制备及性能的研究 [D]. 深圳: 深圳大学, 2017)
[11] Zhao B H, Fan H B, Sun Y J. Molybdenum sputtering film and target for TFT-LCD manufacture [J]. China Molybd. Ind., 2011, 35(1): 7
[11] (赵宝华, 范海波, 孙院军. TFT-LCD制造用钼薄膜溅射及其靶材 [J]. 中国钼业, 2011, 35(1): 7)
[12] Yang B C, Cui H L. Manufacture and application of sputtering target materials [J]. Vacuum, 2001, (3): 11
[12] (杨邦朝, 崔红玲. 溅射靶材的制备与应用 [J]. 真空, 2001, (3): 11)
[13] Jiang L, Zhang L, Liu Z Q. Optimal design of Co/In/Cu sputtering target assembly using finite element method and Taguchi method [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1407
[14] Shah R P, Steele D E, Turner W R, et al. Ni-plated target diffusion bonded to a backing plate and method of making same [P]. PU.S. at, 6555250, 2003
[15] Zhu R D, Dong W C, Lin H Q, et al. Finite element simulation of welding residual stress for buffer beam of CRH2A high speed train [J]. Acta Metall. Sin., 2014, 50: 944
[15] (朱瑞栋, 董文超, 林化强等. CRH2A 型动车组缓冲梁结构焊接残余应力的有限元模拟 [J]. 金属学报, 2014, 50: 944)
[16] Kovalev S P, Miranzo P, Osendi M I. Finite element simulation of thermal residual stresses in joining ceramics with thin metal interlayers [J]. J. Am. Ceram. Soc., 1998, 81: 2342
[17] Zhang Z G, Qi B Y, Jin Z W, et al. Perylene diimides: A thickness-insensitive cathode interlayer for high performance polymer solar cells [J]. Energy Environ. Sci., 2014, 7: 1966
[18] Ali R, Sebastiani M, Bemporad E. Influence of Ti-TiN multilayer PVD-coatings design on residual stresses and adhesion [J]. Mater. Des., 2015, 75: 47
[19] Lee I H, Kim T G, Park Y. Growth of crack-free AlGaN film on high-temperature thin AlN interlayer [J]. J. Cryst. Growth, 2002, 234: 305
doi: 10.1016/S0022-0248(01)01702-X
[20] Lin C R, Kuo C T, Chang R M. Improvement in adhesion of diamond films on cemented WC substrate with Ti-Si interlayers [J]. Diam. Relat. Mater., 1998, 7: 1628
[21] Wang B L, Li Y Z, Huo Y Z. Thermal stress distributions and optimization on stress reductions with or/and without linearly graded interlayers [J]. Composites, 2011, 42B: 993
[22] Liu C Y, Tu K N, Sheng T T, et al. Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization [J]. J. Appl. Phys., 2000, 87: 750
[23] Jang G Y, Duh J G. Elemental redistribution and interfacial reaction mechanism for the flip chip Sn-3.0Ag-(0.5 or 1.5)Cu solder bump with Al/Ni(V)/Cu under-bump metallization during aging [J]. J. Electron. Mater., 2006, 35: 2061
[24] Resnik D, Vrtačnik D, Aljančič U, et al. Influence of mechanical stress on adhesion properties of DC magnetron sputtered Ti/NiV/Ag layers on n+ Si substrate [J]. Microelectron. Eng., 2008, 85: 1603
[25] Li R F, Chen H N, Yu L, et al. GB/T 31218-2014 Metallic materials—Determination of residual stress—Sectioning relaxation strain-gage method [S]. Beijing: China Standard Press, 2015
[25] (李荣锋, 陈怀宁, 余 立等. GB/T 31218-2014 金属材料 残余应力测定 全释放应变法 [S]. 北京: 中国标准出版社, 2015)
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[4] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[5] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[6] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[9] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[10] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[11] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[12] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[13] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[14] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[15] 赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.