|
|
Inconel 718变形高温合金热加工组织演变与发展趋势 |
刘永长( ), 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军 |
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354 |
|
Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency |
Yongchang LIU( ), Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI |
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
Yongchang LIU,
Hongjun ZHANG,
Qianying GUO,
Xiaosheng ZHOU,
Zongqing MA,
Yuan HUANG,
Huijun LI.
Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. Acta Metall Sin, 2018, 54(11): 1653-1664.
[1] | Liu Y C, Guo Q Y, Li C, et al.Recent progress on evolution of precipitates in Inconel 718 superalloy[J]. Acta Metall. Sin., 2016, 52: 1259(刘永长, 郭倩颖, 李冲等. Inconel 718高温合金中析出相演变研究进展[J]. 金属学报, 2016, 52: 1259) | [2] | Xie X S, Dong J X, Fu S H, et al.Research and development of γ" and γ′ strengthened Ni-Fe base superalloy GH4169[J]. Acta Metall. Sin., 2010, 46: 1289(谢锡善, 董建新, 付书红等. γ"和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46: 1289) | [3] | Paulonis D F, Oblak J M, Duvall D S.Precipitation in nickel-base alloy 718[J]. ASM Trans. Quart., 1969, 62: 611 | [4] | Chaturvedi M C, Han Y F.Strengthening mechanisms in Inconel 718 superalloy[J]. Met. Sci., 1983, 17: 145 | [5] | Oblak J M, Paulonis D F, Duvall D S.Coherency strengthening in Ni base alloys hardened by D022 γ" precipitates[J]. Metall. Trans., 1974, 5: 143 | [6] | Barker J F, Ross E W, Radavich J F.Long time stability of Inconel 718[J]. J. Met., 1970, 22: 31 | [7] | Mei Y P, Liu Y C, Liu C X, et al.Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J]. Mater. Des., 2016, 89: 964 | [8] | Zhang H J, Li C, Liu Y C, et al.Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment[J]. J. Alloys Compd., 2017, 716: 65 | [9] | Zhang H J, Li C, Guo Q Y, et al.Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 ℃: The role of δ phase[J]. Mater. Sci. Eng., 2018, A722: 136 | [10] | Thomas J P, Montheillet F, Dumont C. Microstructural evolutions of superalloy 718 during dynamic and metadynamic recrystallizations [J]. Mater. Sci. Forum, 2003, 426-432: 791 | [11] | Lin Y C, Wu X Y, Chen X M, et al.EBSD study of a hot deformed nickel-based superalloy[J]. J. Alloys Compd., 2015, 640: 101 | [12] | Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137 | [13] | Thomas J P, Bauchet E, Dumont C, et al.EBSD investigation and modeling of the microstructural evolutions of superalloy 718 during hot deformation [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 959 | [14] | Zhang J M, Gao Z Y, Zhuang J Y, et al.Mathematical modeling of the hot-deformation behavior of superalloy IN718[J]. Metall. Mater. Trans., 1999, 30A: 2701 | [15] | De Jaeger J, Solas D, Fandeur O, et al.3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718[J]. Mater. Sci. Eng., 2015, A646: 33 | [16] | Schwant R C, Thamboo S V, Anderson A F, et al.Large 718 forgings for land based turbines [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1997: 141 | [17] | Uginet J F, Jackson J J.Alloy 718 forging development for large land-based gas turbines [A]. Superalloys 718, 625, 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 57 | [18] | Uginet J F, Pieraggi B.Study of secondary grain growth on 718 alloy [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1997: 343 | [19] | Zouari M, Logé R, Bozzolo N.In situ characterization of Inconel 718 post-dynamic recrystallization within a scanning slectron microscope[J]. Metals, 2017, 7: 476 | [20] | Zouari M, Logé R E, Beltran O, et al.Multipass forging of Inconel 718 in the delta-supersolvus domain: Assessing and modeling microstructure evolution [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 12001 | [21] | Chen X M, Lin Y C, Wu F.EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy[J]. J. Alloys Compd., 2017, 724: 198 | [22] | Desvallées Y, Bouzidi M, Bois F, et al.Delta phase in Inconel 718: Mechanical properties and forging process requirements [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994: 281 | [23] | Ruiz C, Obabueki A, Gillespie K.Evaluation of the microstructure and mechanical properties of delta processed alloy 718 [A]. Superalloys 1992[C]. Champion, PA: TMS, 1992: 33 | [24] | Watson R, Preuss M, da Fonseca J Q, et al. Characterization of abnormal grain coarsening in Alloy 718 [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 07004 | [25] | Zhang H J, Li C, Guo Q Y, et al.Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization[J]. Mater. Charact., 2017, 133: 138 | [26] | Dye D, Conlon K T, Reed R C.Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718[J]. Metall. Mater. Trans., 2004, 35A: 1703 | [27] | Dahan Y, Nouveau S, Georges E, et al.Residual stresses in Inconel 718 engine disks [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 10003 | [28] | Rist M A, James J A, Tin S, et al.Residual stresses in a quenched superalloy turbine disc: Measurements and modeling[J]. Metall. Mater. Trans., 2006, 37A: 459 | [29] | Qin H L, Bi Z N, Yu H Y, et al.Influence of stress on γ″ precipitation behavior in Inconel 718 during aging[J]. J. Alloys Compd., 2018, 740: 997 | [30] | Qin H L, Bi Z N, Yu H Y, et al.Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy[J]. Mater. Sci. Eng., 2018, A728: 183 | [31] | Sun S B, Zheng L J, Liu J H, et al.Selective laser melting of an Al-Fe-V-Si alloy: Microstructural evolution and thermal stability[J]. J. Mater. Sci. Technol., 2017, 33: 389 | [32] | Murr L E.Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication[J]. J. Mater. Sci. Technol., 2016, 32: 987 | [33] | Song K, Yu K, Lin X, et al.Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718[J]. Acta Metall. Sin., 2015, 51: 935(宋衎, 喻凯, 林鑫等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报, 2015, 51: 935) | [34] | Yap C Y, Chua C K, Dong Z L, et al.Review of selective laser melting: Materials and applications[J]. Appl. Phys. Rev., 2015, 2: 041101 | [35] | Wang X Q, Gong X B, Chou K.Review on powder-bed laser additive manufacturing of Inconel 718 parts[J]. Proc. Inst. Mech. Eng., 2016, 231B: 1890 | [36] | Lu Z L, Cao J W, Jing H, et al.Review of main manufacturing processes of complex hollow turbine blades[J]. Virtual Phys. Prototyping, 2013, 8: 87 | [37] | Zhang J L, Guo Q Y, Liu Y C, et al.Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy[J]. Int. J. Miner. Metall. Mater., 2016, 239: 1087 | [38] | Zhang H J, Li C, Liu Y C, et al.Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Mater. Sci. Eng., 2016, A677: 515 | [39] | Lingenfelter A.Welding of Inconel alloy 718: A historical overview [A]. Superalloy 718—Metallurgy and Applications[C]. Pittsburgh, PA: TMS, 1989: 673 | [40] | Chlebus E, Gruber K, Ku?nicka B, et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J]. Mater. Sci. Eng., 2015, A639: 647 | [41] | DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112 | [42] | Wang Z M, Guan K, Gao M, et al.The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. J. Alloys Compd., 2012, 513: 518 | [43] | Parimi L L, Ravi G A, Clark D, et al.Microstructural and texture development in direct laser fabricated IN718[J]. Mater. Charact., 2014, 89: 102 | [44] | Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al.Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Mater. Sci. Eng., 2017, A689: 220 | [45] | Jia Q B, Gu D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties[J]. J. Alloys Compd., 2014, 585: 713 | [46] | Trosch T, Str??ner J, V?lkl R, et al.Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Mater. Lett., 2016, 164: 428 | [47] | Schneider J, Lund B, Fullen M.Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Addit. Manuf., 2018, 21: 248 | [48] | Hautfenne C, Nardone S, Bruycher E D.Influence of heat treatments and build orientation on the creep strength of additive manufactured IN718 [A]. 4th International ECCC Conference[C]. Düsseldorf, Germany: Steel Institute VDEh, 2017: 1 | [49] | Pr?bstle M, Neumeier S, Hopfenmüller J, et al.Superior creep strength of a nickel-based superalloy produced by selective laser melting[J]. Mater. Sci. Eng., 2016, A674: 299 | [50] | Yoo Y S J, Book T A, Sangid M D, et al. Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting[J]. Mater. Sci. Eng., 2018, A724: 444 | [51] | Kone?ná R, Kunz L, Nicoletto G, et al.Long fatigue crack growth in Inconel 718 produced by selective laser melting[J]. Int. J. Fatigue, 2016, 92: 499 | [52] | Zhou Z J, Hua X, Li C P, et al.The effects of texture on the low cycle fatigue property of Inconel 718 by selective laser melting [A]. 12th International Fatigue Congress[C]. Poitiers Futuroscope, France: EDP Sciences, 2018: 02007 | [53] | Thijs L, Sistiaga M L M, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Mater., 2013, 61: 4657 | [54] | Popovich V A, Borisov E V, Popovich A A, et al.Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties[J]. Mater. Des., 2017, 114: 441 | [55] | Ni M, Chen C, Wang X J, et al.Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Mater. Sci. Eng., 2017, A701: 344 | [56] | Deng D Y, Peng R L, Brodin H, et al.Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments[J]. Mater. Sci. Eng., 2018, A713: 294 | [57] | Sangid M D, Book T A, Naragani D, et al.Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing[J]. Addit. Manuf., 2018, 22: 479 | [58] | Reed R C, translated by He Y H, Zhao W X, Qu S Y. Superalloys Fundamentals and Applications [M]. Beijing: China Machine Press, 2016: 224(Reed R C著, 何玉怀, 赵文侠, 曲士昱译. 高温合金基础与应用 [M]. 北京: 机械工业出版社, 2016: 224) | [59] | Xiao L, Chen D L, Chaturvedi M C.Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation[J]. Scr. Mater., 2005, 52: 603 | [60] | Sundararaman M, Mukhopadhyay P, Banerjee S.Deformation behaviour of γ″ strengthened Inconel 718[J]. Acta Metall., 1988, 36: 847 | [61] | McAllister D, Lv D, Deutchman H, et al. Characterization and modeling of deformation mechanisms in Ni-base superalloy 718 [A]. Superalloys 2016[C]. Champion, PA: TMS, 2016: 821 | [62] | Tanimura M, Koyama Y.The role of antiphase boundaries in the kinetic process of the L12→D022 structural change of an Ni3Al0.45V0.50 alloy[J]. Acta Mater., 2006, 54: 4385 | [63] | Sundararaman M, Mukhopadhyay P, Banerjee S.Some aspects of the precipitation of metastable intermetallic phases in Inconel 718[J]. Metall. Trans., 1992, 23A: 2015 | [64] | Yuan Y, Gu Y F, Zhong Z H.Controlling the deformation mechanism in disk superalloys at low and intermediate temperatures [A]. Superalloys 2012[C]. Champion, PA: TMS, 2012: 35 | [65] | Kovarik L, Unocic R R, Li J, et al.Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys[J]. Prog. Mater. Sci., 2009, 54: 839 | [66] | Kear B H, Oblak J M, Giamei A F.Stacking faults in gamma prime Ni3(Al, Ti) precipitation hardened nickel-base alloys[J]. Metall. Trans., 1970, 1: 2477 | [67] | Raynor D, Silcock J M.Strengthening Mechanisms in γ′-precipitating alloys[J]. Met. Sci. J., 1970, 4: 121 | [68] | Kear B H, Oblak J M.Deformation modes in γ′ precipitation hardened nickel-base alloys[J]. J. Phys. Colloq., 1974, 35: 35 | [69] | Jena A K.On the stability of precipitating phases in nickel base superalloys[J]. Mater. Sci. Forum, 1985, 3: 281 | [70] | Pope D P, Ezz S S.Mechanical properties of Ni3AI and nickel-base alloys with high volume fraction of γ′[J]. Int. Met. Rev., 1984, 29: 136 | [71] | McAllister D, Lv D, Peterson B, et al. Lower temperature deformation mechanisms in a γ″-strengthened Ni-base superalloy[J]. Scr. Mater., 2016, 115: 108 | [72] | Lv D C, McAllister D, Mills M J, et al. Deformation mechanisms of D022 ordered intermetallic phase in superalloys[J]. Acta Mater., 2016, 118: 350 | [73] | Phillips P J, McAllister D, Gao Y, et al. Nano γ′/γ″ composite precipitates in Alloy 718[J]. Appl. Phys. Lett., 2012, 100: 211913 | [74] | Schafrik R E, Ward D D, Groh J R.Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 2001: 1 | [75] | Wang H P, Zheng C H, Zou P F, et al.Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states[J]. J. Mater. Sci. Technol., 2018, 34: 436 | [76] | Furrer D, Fecht H.Ni-based superalloys for turbine discs[J]. JOM, 1999, 51(1): 14 | [77] | Collier J P, Wong S H, Phillips J C, et al.The effect of varying AI, Ti, and Nb content on the phase stability of Inconel 718[J]. Metall. Trans., 1988, 19A: 1657 | [78] | Cozar R, Pineau A.Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type Alloys[J]. Metall. Trans., 1973, 4: 47 | [79] | Groh J R, Radavich J F.Effects of iron, nickel, and cobalt on precipitation hardening of alloy 718 [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1991: 351 | [80] | Kennedy R L.Allvac? 718PlusTM, superalloy for the next forty years [A]. Superalloys 718, 625 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 1 | [81] | Cao W D, Kennedy R L.Role of chemistry in 718-type alloys—Allvac 718Plus alloy development [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 91 | [82] | Ott E A, Groh J, Sizek H.Metals affordability initiative: Application of Allvac alloy 718PlusTM for aircraft engine static structural components [A]. Superalloys 718, 625, 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 35 | [83] | Cao W D, Kennedy R L.New developments in wrought 718-type superalloys[J]. Acta Metall. Sin.(Engl. Lett.), 2005, 18: 39 | [84] | Srinivasan D, LawLess L U, Ott E A. Experimental determination of TTT diagram for alloy 718Plus [A]. 12th International Symposium on Superalloys[C]. Champion, PA: TMS, 2012: 759 | [85] | Pickering E J, Mathur H, Bhowmik A, et al.Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater., 2012, 60: 2757 | [86] | Xie X S, Wang G L, Dong J X, et al.Structure stability study on a newly developed nickel-base superalloy-Allvac 718Plus [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 2005: 179 | [87] | Krakow R, Johnstone D N, Eggeman A S, et al.On the crystallography and composition of topologically close-packed phases in ATI 718Plus? [J]. Acta Mater., 2017, 130: 271 | [88] | Axter S E, Polonis D H.The influence of cobalt, iron and aluminum on the precipitation of metastable phases in the Ni-Ta system[J]. Mater. Sci. Eng., 1983, 60: 151 | [89] | He J, Han G, Fukuyama S, et al.Interfaces in a modified Inconel 718 with compact precipitates[J]. Acta Mater., 1998, 46: 215 | [90] | Manriquez J A, Bretz P L, Rabenberg L, et al.The high temperature stability of In718 derivative alloys [A]. Superalloys 1992[C]. Champion, PA: TMS, 1992: 507 | [91] | Detor A J, DiDomizio R, Moshtaghin R S, et al. Enabling large superalloy parts using compact coprecipitation of γ′ and γ″[J]. Metall. Mater. Trans., 2018, 49A: 708 | [92] | Mignanelli P M, Jones N G, Pickering E J, et al.Gamma-gamma prime-gamma double prime dual-superlattice superalloys[J]. Scr. Mater., 2017, 136: 136 | [93] | Mignanelli P M, Jones N G, Hardy M C, et al.On the time-temperature-transformation behavior of a new dual-superlattice nickel-based superalloy[J]. Metall. Mater. Trans., 2018, 49A: 699 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|