|
|
选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展 |
祝国梁1,2( ), 孔德成1,2, 周文哲1,2, 贺戬1,2, 董安平1,2, 疏达1,2, 孙宝德1,2 |
1.上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240 2.上海交通大学 金属基复合材料国家重点实验室 上海 200240 |
|
Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting |
ZHU Guoliang1,2( ), KONG Decheng1,2, ZHOU Wenzhe1,2, HE Jian1,2, DONG Anping1,2, SHU Da1,2, SUN Baode1,2 |
1.Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.State Key Laboratory of Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
Guoliang ZHU,
Decheng KONG,
Wenzhe ZHOU,
Jian HE,
Anping DONG,
Da SHU,
Baode SUN.
Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 16-30.
1 |
Tang H B, Wu Y, Zhang S Q, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique [J]. J. Netshape Form. Eng., 2019, 11(4): 58
|
1 |
汤海波, 吴 宇, 张述泉 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势 [J]. 精密成形工程, 2019, 11(4): 58
|
2 |
Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing [J]. Chin. J. Eng., 2019, 41: 159
|
2 |
李 昂, 刘雪峰, 俞 波 等. 金属增材制造技术的关键因素及发展方向 [J]. 工程科学学报, 2019, 41: 159
|
3 |
Zhang A F, Li D C, Liang S D, et al. Development of laser additive manufacturing of high-performance metal parts [J]. Aeronaut. Manuf. Technol., 2016, (22): 16
|
3 |
张安峰, 李涤尘, 梁少端 等. 高性能金属零件激光增材制造技术研究进展 [J]. 航空制造技术, 2016, (22): 16
|
4 |
Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2008: 1
|
5 |
Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7
pmid: 32393778
|
6 |
Guo B J, Zhang Y S, Yang Z S, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing [J]. Addit. Manuf., 2022, 55: 102792
|
7 |
Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
doi: 10.1016/j.actamat.2015.04.035
|
8 |
Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
|
9 |
Xu J H. Alloy design and characterization of γ′ strengthened nickel-based superalloys for additive manufacturing [D]. Linköping University, 2021
|
10 |
Attallah M M, Jennings R, Wang X Q, et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758
doi: 10.1557/mrs.2016.211
|
11 |
Basak A, Das S. Additive manufacturing of nickel‐base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
doi: 10.1002/adem.201600690
|
12 |
Griffiths S, Tabasi H G, Ivas T, et al. Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy [J]. Addit. Manuf., 2020, 36: 101443
|
13 |
Chandra S, Tan X P, Narayan R L, et al. A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting [J]. Addit. Manuf., 2021, 37: 101633
|
14 |
Han Q Q, Gu Y C, Setchi R, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy [J]. Addit. Manuf., 2019, 30: 100919
|
15 |
Ghoussoub J N, Tang Y T, Panwisawas C, et al. On the influence of alloy chemistry and processing conditions on additive manufacturability of Ni-based superalloys [A]. Superalloys 2020 [M]. Cham: Springer, 2020: 153
|
16 |
Liang Y J, Cheng X, Wang H M. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification [J]. Acta Mater., 2016, 118: 17
doi: 10.1016/j.actamat.2016.07.008
|
17 |
Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys [J]. Acta Mater., 2017, 139: 244
doi: 10.1016/j.actamat.2017.05.003
pmid: 29230094
|
18 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
18 |
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
19 |
Qiao S, Zhou W Z, Tan Q B, et al. Research progress of additive manufacturing of CM247LC nickel-based superalloy [J]. J. Netshape Form. Eng., 2022, 48(8): 93
|
19 |
乔 绅, 周文哲, 谭庆彪 等. 镍基高温合金CM247LC增材制造研究进展 [J]. 精密成形工程, 2022, 48(8): 93
|
20 |
Zhou Y Z, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A479: 324
|
21 |
Engeli R, Etter T, Hövel S, et al. Processability of different IN738LC powder batches by selective laser melting [J]. J. Mater. Process. Technol., 2016, 229: 484
doi: 10.1016/j.jmatprotec.2015.09.046
|
22 |
Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
|
23 |
Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
|
24 |
Grodzki J, Hartmann N, Rettig R, et al. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy [J]. Metall. Mater. Trans., 2016, 47A: 2914
|
25 |
Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
doi: 10.1016/j.actamat.2015.10.006
|
26 |
Gruber H, Hryha E, Lindgren K, et al. The effect of boron and zirconium on the microcracking susceptibility of IN-738LC derivatives in laser powder bed fusion [J]. Appl. Surf. Sci., 2022, 573: 151541
doi: 10.1016/j.apsusc.2021.151541
|
27 |
Li Q G, Lin X, Wang X H, et al. Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al + Ti [J]. Appl. Laser, 2016, 36: 471
|
27 |
李秋歌, 林 鑫, 王杏华 等. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展 [J]. 应用激光, 2016, 36: 471
|
28 |
Wang X J, Liu L, Huang T W, et al. Grain boundary precipitation behavior in Re-containing nickel-based directionally solidified superalloys with carbon and boron additions [J]. Vacuum, 2020, 179: 109483
doi: 10.1016/j.vacuum.2020.109483
|
29 |
Kontis P, Chauvet E, Peng Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys [J]. Acta Mater., 2019, 177: 209
doi: 10.1016/j.actamat.2019.07.041
|
30 |
Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy [J]. Scr. Mater., 2004, 50: 641
doi: 10.1016/j.scriptamat.2003.11.025
|
31 |
Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
|
32 |
Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment [J]. Mater. Charact., 2016, 114: 62
doi: 10.1016/j.matchar.2016.02.004
|
33 |
Acharya R, Das S. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: Process development, modeling, microstructural characterization, and process control [J]. Metall. Mater. Trans., 2015, 46A: 3864
|
34 |
Roy I, Balikci E, Ibekwe S, et al. Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC [J]. J. Mater. Sci., 2005, 40: 6207
doi: 10.1007/s10853-005-3154-6
|
35 |
Kontis P, Collins D M, Wilkinson A J, et al. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation [J]. Scr. Mater., 2018, 147: 59
doi: 10.1016/j.scriptamat.2017.12.028
|
36 |
Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
doi: 10.1016/j.matdes.2015.10.027
|
37 |
Heydari D, Fard A S, Bakhshi A, et al. Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content [J]. J. Mater. Process. Technol., 2014, 214: 681
doi: 10.1016/j.jmatprotec.2013.10.001
|
38 |
Bidron G, Doghri A, Malot T, et al. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating [J]. J. Mater. Process. Technol., 2020, 277: 116461
doi: 10.1016/j.jmatprotec.2019.116461
|
39 |
Lei Y C, Aoyagi K, Aota K, et al. Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting [J]. Acta Mater., 2021, 208: 116695
doi: 10.1016/j.actamat.2021.116695
|
40 |
Messé O M D M, Muñoz-Moreno R, Illston T, et al. Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting [J]. Addit. Manuf., 2018, 22: 394
|
41 |
Lippold J C, Kiser S D, DuPont J N. Welding metallurgy and weldability of nickel-base alloys[M]. New Jersey: John Wiley & Sons, 2011: 1
|
42 |
Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019, 174: 107793
doi: 10.1016/j.matdes.2019.107793
|
43 |
Xu J J, Lin X, Guo P F, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy [J]. J. Alloys Compd., 2018, 749: 859
doi: 10.1016/j.jallcom.2018.03.366
|
44 |
Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
|
45 |
Adegoke O, Andersson J, Brodin H, et al. Review of laser powder bed fusion of gamma-prime-strengthened nickel-based superalloys [J]. Metals, 2020, 10: 996
doi: 10.3390/met10080996
|
46 |
Thomas E, Roman E, Andreas K. Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys [P]. US, 9670572-B2, 2017
|
47 |
Basak A, Acharya R, Das S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization [J]. Metall. Mater. Trans., 2016, 47A: 3845
|
48 |
Megahed M, Mindt H W, N'Dri N, et al. Metal additive-manufacturing process and residual stress modeling [J]. Integr. Mater. Manuf. Innov., 2016, 5: 61
doi: 10.1186/s40192-016-0047-2
|
49 |
Carpenter K, Tabei A. On residual stress development, prevention, and compensation in metal additive manufacturing [J]. Materials, 2020, 13(2): 255
doi: 10.3390/ma13020255
|
50 |
Fang Z C, Wu Z L, Huang C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts [J]. Opt. Laser Technol., 2020, 129: 106283
doi: 10.1016/j.optlastec.2020.106283
|
51 |
Risse J. Additive manufacturing of nickel-base superalloy IN738LC by laser powder bed fusion [D]. Lehrstuhl: Lehrstuhl für Lasertechnik, 2019
|
52 |
Xu J H, Gruber H, Peng R L, et al. A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion [J]. Materials, 2020, 13: 4930
doi: 10.3390/ma13214930
|
53 |
Bartlett J L, Croom B P, Burdick J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation [J]. Addit. Manuf., 2018, 22: 1.
|
54 |
Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys [J]. Acta Mater., 2019, 176: 199
doi: 10.1016/j.actamat.2019.07.005
|
55 |
Engeli R. Selective laser melting & heat treatment of γ′ strengthened Ni-base superalloys for high temperature applications [D]. Zurich: ETH Zurich, 2017
|
56 |
Xu J Y, Ding Y T, Gao Y B, et al. Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting [J]. Mater. Des., 2021, 209: 109940
doi: 10.1016/j.matdes.2021.109940
|
57 |
Guo C, Zhou Y, Li X G, et al. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90: 45
doi: 10.1016/j.jmst.2021.03.006
|
58 |
Zhang S Y, Lin X, Wang L L, et al. Influence of grain inhomogeneity and precipitates on the stress rupture properties of Inconel 718 superalloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, A803: 140702
|
59 |
Papadakis L, Chantzis D, Salonitis K. On the energy efficiency of pre-heating methods in SLM/SLS processes [J]. Int. J. Adv. Manuf. Technol., 2018, 95: 1325
doi: 10.1007/s00170-017-1287-9
|
60 |
Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion [J]. Addit. Manuf., 2019, 27: 131
doi: 10.1016/j.addma.2019.02.020
|
61 |
Kempen K, Thijs L, Vrancken B, et al. Producing crack-free, high density M2 Hss parts by selective laser melting: Pre-heating the baseplate [A]. Proceedings of the 2013 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2013: 131
|
62 |
Liu W B, Mo S D, Xie Y G, et al. Research progress of hot isostatic pressing to eliminate the pores in metal parts prepared by additive manufacturing [J]. Mater. Res. Appl., 2021, 15: 287
|
62 |
刘文彬, 莫仕栋, 谢月光 等. 热等静压消除金属增材制造构件孔隙的研究进展 [J]. 材料研究与应用, 2021, 15: 287
|
63 |
Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
|
64 |
Han Q Q, Mertens R, Montero-Sistiaga M L, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism [J]. Mater. Sci. Eng., 2018, A732: 228
|
65 |
He Q G, Liu J, Li L X, et al. Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy [J]. Mater. Sci. Forum, 2017, 898: 401
doi: 10.4028/www.scientific.net/MSF.898.401
|
66 |
Sentyurina Z A, Baskov F A, Loginov P A, et al. The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion [J]. Addit. Manuf., 2021, 37: 101629
|
67 |
Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
|
68 |
Vilanova M, Garciandia F, Sainz S, et al. The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy [J]. J. Mater. Process. Technol., 2022, 300: 117398
doi: 10.1016/j.jmatprotec.2021.117398
|
69 |
Zhou W Z, Zhu G L, Wang R, et al. Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A791: 139745
|
70 |
Chen L Y, Xu J Q, Choi H, et al. Rapid control of phase growth by nanoparticles [J]. Nat. Commun., 2014, 5: 3879
doi: 10.1038/ncomms4879
|
71 |
Cheng X P, Zhao Y N, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3 [J]. Mater. Sci. Eng., 2021, A824: 141867
|
72 |
Bandyopadhyay A, Traxel K D, Lang M, et al. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives [J]. Mater. Today, 2022, 52: 207
doi: 10.1016/j.mattod.2021.11.026
|
73 |
Sun Z J, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing [J]. Nat. Commun., 2022, 13: 4361
doi: 10.1038/s41467-022-31969-y
pmid: 35896545
|
74 |
Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion [J]. Addit. Manuf., 2022, 58: 103016
|
75 |
Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 807: 151662
doi: 10.1016/j.jallcom.2019.151662
|
76 |
Ackers M A, Messé O M D M, Hecht U. Novel approach of alloy design and selection for additive manufacturing towards targeted applications [J]. J. Alloys Compd., 2021, 866: 158965
doi: 10.1016/j.jallcom.2021.158965
|
77 |
Clare A T, Mishra R S, Merklein M, et al. Alloy design and adaptation for additive manufacture [J]. J. Mater. Process. Technol., 2022, 299: 117358
doi: 10.1016/j.jmatprotec.2021.117358
|
78 |
Knoll H, Ocylok S, Weisheit A, et al. Combinatorial alloy design by laser additive manufacturing [J]. Steel Res. Int., 2017, 88: 1600416
doi: 10.1002/srin.201600416
|
79 |
Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
|
80 |
Ghoussoub J N, Klupś P, Dick-Cleland W J B, et al. A new class of alumina-forming superalloy for 3D printing [J]. Addit. Manuf., 2022, 52: 102608
|
81 |
Yan W T, Lin S, Kafka O L, et al. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing [J]. Comput. Mech., 2018, 61: 521
doi: 10.1007/s00466-018-1539-z
|
82 |
Zhang N, Wang M H, Zhang S Y, et al. Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis [J]. Rare Met. Mater. Eng., 2022, 51: 2698
|
82 |
张 楠, 王淼辉, 张书彦 等. 基于同步辐射和中子衍射分析的金属增材制造关键共性问题研究进展 [J]. 稀有金属材料与工程, 2022, 51: 2698
|
83 |
Wu Z K, Zhang J, Wu S C, et al. Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components [J]. Nondestr. Test., 2020, 42(7): 46
|
83 |
吴正凯, 张 杰, 吴圣川 等. 同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用 [J]. 无损检测, 2020, 42(7): 46
|
84 |
Ioannidou C, König H H, Semjatov N, et al. In-situ synchrotron X-ray analysis of metal additive manufacturing: Current state, opportunities and challenges [J]. Mater. Des., 2022, 219: 110790
doi: 10.1016/j.matdes.2022.110790
|
85 |
du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights [J]. Mater. Des., 2020, 187: 108385
doi: 10.1016/j.matdes.2019.108385
|
86 |
Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
|
87 |
Yan W T, Ge W J, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting [J]. Acta Mater., 2017, 134: 324
doi: 10.1016/j.actamat.2017.05.061
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|