Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 16-30    DOI: 10.11900/0412.1961.2022.00434
  综述 本期目录 | 过刊浏览 |
选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展
祝国梁1,2(), 孔德成1,2, 周文哲1,2, 贺戬1,2, 董安平1,2, 疏达1,2, 孙宝德1,2
1.上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240
2.上海交通大学 金属基复合材料国家重点实验室 上海 200240
Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting
ZHU Guoliang1,2(), KONG Decheng1,2, ZHOU Wenzhe1,2, HE Jian1,2, DONG Anping1,2, SHU Da1,2, SUN Baode1,2
1.Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Laboratory of Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
Guoliang ZHU, Decheng KONG, Wenzhe ZHOU, Jian HE, Anping DONG, Da SHU, Baode SUN. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 16-30.

全文: PDF(4052 KB)   HTML
摘要: 

传统牌号高强镍基高温合金具有较宽的凝固温度区间、较高比例的低熔点共晶相,在增材制造快速非平衡凝固过程中易产生裂纹等缺陷;同时,热处理过程中残余应力释放和γ'相快速析出导致应变时效裂纹的形成,严重限制了其在激光增材制造领域的应用与推广。基于此,本文综述了近年来国内外研究组及作者团队在选区激光熔化高强镍基高温合金裂纹形成机理与抗裂纹设计(成形工艺参数优化、热处理制度调控以及合金成分设计)领域相关的研究进展,并对激光增材制造γ'相强化镍基高温合金裂纹调控的研究进行了展望。

关键词 选区激光熔化高强镍基高温合金裂纹抗裂纹设计    
Abstract

Traditional high-strength nickel-based superalloys have a wide solidification temperature range and high proportion of low melting point eutectic phases, which are prone to cracking during rapid nonequilibrium solidification. The residual stress release and rapid nucleation of γ' precipitate during the post-heat treatment process result in crack formation for high-strength nickel-based superalloys, which limits their application and promotion in the field of additive manufacturing. In this review, the research progress in crack formation mechanism and cracking-free design (printing parameter optimization, post-treatment regulation, and alloying design) of high-strength nickel-based superalloys fabricated via additive manufacturing is presented. Additionally, research prospects related to crack control of additively manufactured high-strength nickel-based superalloys are proposed.

Key wordsselective laser melting    high-strength nickel-based superalloy    crack    cracking-free design
收稿日期: 2022-09-01     
ZTFLH:  TG146.15  
基金资助:中国博士后科学基金项目(2022TQ0203)
作者简介: 祝国梁,男,1983年生,研究员,博士
图1  镍基高温合金的可焊接性能(裂纹敏感性)与合金元素的关联[9,11]
图2  选区激光熔化CM247LC高强镍基高温合金典型的裂纹形貌[22]
图3  不可焊高Al、Ti镍基高温合金晶界处裂纹尖端的原子重构结果(箭头1所示为穿过γ'/GB/γ界面的一维元素分布)[29]
图4  不同析出相类型镍基高温合金热处理开裂的温度与时间关系[41],选区激光熔化CM247LC合金不同温度热处理2 h后裂纹密度统计,晶界处高温失塑裂纹与应变时效裂纹形貌[42]
图5  选区激光熔化过程残余应力分布和形成机制的示意图,块状样品切除基板前后的残余应力分布情况[51]
图6  选区激光熔化高强镍基高温合金成形质量与扫描速率和扫描策略的对应关系[55,56]
图7  连续波和脉冲波模式下同一点(P2)的温度分布、冷却速率与时间的关系,以及连续波模式和脉冲波模型下制造的IN738LC合金的缺陷[57]
图8  不同厚度样品基板预热前后底部开裂情况[60],基板预热温度对高强镍基高温合金裂纹密度及残余应力的影响规律[51]
图9  热等静压前后增材制造样品内部裂纹的形貌特征[66]以及样品表面的裂纹缺陷分布情况[55]
图10  第二相碳化物添加前后选区激光熔化IN738LC合金裂纹情况对比及裂纹和晶界处的元素分布情况[69]
图11  激光增材制造无裂纹镍基高温合金设计[22]和增材制造新型镍基高温合金性能设计对比[80]
1 Tang H B, Wu Y, Zhang S Q, et al. Research status and development trend of high performance large metallic components by laser additive manufacturing technique [J]. J. Netshape Form. Eng., 2019, 11(4): 58
1 汤海波, 吴 宇, 张述泉 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势 [J]. 精密成形工程, 2019, 11(4): 58
2 Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing [J]. Chin. J. Eng., 2019, 41: 159
2 李 昂, 刘雪峰, 俞 波 等. 金属增材制造技术的关键因素及发展方向 [J]. 工程科学学报, 2019, 41: 159
3 Zhang A F, Li D C, Liang S D, et al. Development of laser additive manufacturing of high-performance metal parts [J]. Aeronaut. Manuf. Technol., 2016, (22): 16
3 张安峰, 李涤尘, 梁少端 等. 高性能金属零件激光增材制造技术研究进展 [J]. 航空制造技术, 2016, (22): 16
4 Reed R C. The Superalloys: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2008: 1
5 Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys [J]. Nat. Commun., 2020, 11: 2327
doi: 10.1038/s41467-020-16188-7 pmid: 32393778
6 Guo B J, Zhang Y S, Yang Z S, et al. Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing [J]. Addit. Manuf., 2022, 55: 102792
7 Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach [J]. Acta Mater., 2015, 94: 59
doi: 10.1016/j.actamat.2015.04.035
8 Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing [J]. Procedia CIRP, 2018, 71: 348
doi: 10.1016/j.procir.2018.05.039
9 Xu J H. Alloy design and characterization of γ′ strengthened nickel-based superalloys for additive manufacturing [D]. Linköping University, 2021
10 Attallah M M, Jennings R, Wang X Q, et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758
doi: 10.1557/mrs.2016.211
11 Basak A, Das S. Additive manufacturing of nickel‐base superalloy René N5 through scanning laser epitaxy (SLE)—Material processing, microstructures, and microhardness properties [J]. Adv. Eng. Mater., 2017, 19: 1600690
doi: 10.1002/adem.201600690
12 Griffiths S, Tabasi H G, Ivas T, et al. Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy [J]. Addit. Manuf., 2020, 36: 101443
13 Chandra S, Tan X P, Narayan R L, et al. A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting [J]. Addit. Manuf., 2021, 37: 101633
14 Han Q Q, Gu Y C, Setchi R, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy [J]. Addit. Manuf., 2019, 30: 100919
15 Ghoussoub J N, Tang Y T, Panwisawas C, et al. On the influence of alloy chemistry and processing conditions on additive manufacturability of Ni-based superalloys [A]. Superalloys 2020 [M]. Cham: Springer, 2020: 153
16 Liang Y J, Cheng X, Wang H M. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification [J]. Acta Mater., 2016, 118: 17
doi: 10.1016/j.actamat.2016.07.008
17 Keller T, Lindwall G, Ghosh S, et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys [J]. Acta Mater., 2017, 139: 244
doi: 10.1016/j.actamat.2017.05.003 pmid: 29230094
18 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
18 孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
19 Qiao S, Zhou W Z, Tan Q B, et al. Research progress of additive manufacturing of CM247LC nickel-based superalloy [J]. J. Netshape Form. Eng., 2022, 48(8): 93
19 乔 绅, 周文哲, 谭庆彪 等. 镍基高温合金CM247LC增材制造研究进展 [J]. 精密成形工程, 2022, 48(8): 93
20 Zhou Y Z, Volek A. Effect of carbon additions on hot tearing of a second generation nickel-base superalloy [J]. Mater. Sci. Eng., 2008, A479: 324
21 Engeli R, Etter T, Hövel S, et al. Processability of different IN738LC powder batches by selective laser melting [J]. J. Mater. Process. Technol., 2016, 229: 484
doi: 10.1016/j.jmatprotec.2015.09.046
22 Tang Y T, Panwisawas C, Ghoussoub J N, et al. Alloys-by-design: Application to new superalloys for additive manufacturing [J]. Acta Mater., 2021, 202: 417
doi: 10.1016/j.actamat.2020.09.023
23 Zhao Y S, Zhang J, Luo Y S, et al. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy [J]. Acta Mater., 2019, 176: 109
doi: 10.1016/j.actamat.2019.06.054
24 Grodzki J, Hartmann N, Rettig R, et al. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy [J]. Metall. Mater. Trans., 2016, 47A: 2914
25 Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
doi: 10.1016/j.actamat.2015.10.006
26 Gruber H, Hryha E, Lindgren K, et al. The effect of boron and zirconium on the microcracking susceptibility of IN-738LC derivatives in laser powder bed fusion [J]. Appl. Surf. Sci., 2022, 573: 151541
doi: 10.1016/j.apsusc.2021.151541
27 Li Q G, Lin X, Wang X H, et al. Research progress on cracking mechanism and control of laser additive repaired nickel-based superalloys with high content of Al + Ti [J]. Appl. Laser, 2016, 36: 471
27 李秋歌, 林 鑫, 王杏华 等. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展 [J]. 应用激光, 2016, 36: 471
28 Wang X J, Liu L, Huang T W, et al. Grain boundary precipitation behavior in Re-containing nickel-based directionally solidified superalloys with carbon and boron additions [J]. Vacuum, 2020, 179: 109483
doi: 10.1016/j.vacuum.2020.109483
29 Kontis P, Chauvet E, Peng Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys [J]. Acta Mater., 2019, 177: 209
doi: 10.1016/j.actamat.2019.07.041
30 Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy [J]. Scr. Mater., 2004, 50: 641
doi: 10.1016/j.scriptamat.2003.11.025
31 Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
32 Divya V D, Muñoz-Moreno R, Messé O M D M, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment [J]. Mater. Charact., 2016, 114: 62
doi: 10.1016/j.matchar.2016.02.004
33 Acharya R, Das S. Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: Process development, modeling, microstructural characterization, and process control [J]. Metall. Mater. Trans., 2015, 46A: 3864
34 Roy I, Balikci E, Ibekwe S, et al. Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC [J]. J. Mater. Sci., 2005, 40: 6207
doi: 10.1007/s10853-005-3154-6
35 Kontis P, Collins D M, Wilkinson A J, et al. Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation [J]. Scr. Mater., 2018, 147: 59
doi: 10.1016/j.scriptamat.2017.12.028
36 Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J]. Mater. Des., 2016, 89: 770
doi: 10.1016/j.matdes.2015.10.027
37 Heydari D, Fard A S, Bakhshi A, et al. Hot tearing in polycrystalline Ni-based IN738LC superalloy: Influence of Zr content [J]. J. Mater. Process. Technol., 2014, 214: 681
doi: 10.1016/j.jmatprotec.2013.10.001
38 Bidron G, Doghri A, Malot T, et al. Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating [J]. J. Mater. Process. Technol., 2020, 277: 116461
doi: 10.1016/j.jmatprotec.2019.116461
39 Lei Y C, Aoyagi K, Aota K, et al. Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting [J]. Acta Mater., 2021, 208: 116695
doi: 10.1016/j.actamat.2021.116695
40 Messé O M D M, Muñoz-Moreno R, Illston T, et al. Metastable carbides and their impact on recrystallisation in IN738LC processed by selective laser melting [J]. Addit. Manuf., 2018, 22: 394
41 Lippold J C, Kiser S D, DuPont J N. Welding metallurgy and weldability of nickel-base alloys[M]. New Jersey: John Wiley & Sons, 2011: 1
42 Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019, 174: 107793
doi: 10.1016/j.matdes.2019.107793
43 Xu J J, Lin X, Guo P F, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy [J]. J. Alloys Compd., 2018, 749: 859
doi: 10.1016/j.jallcom.2018.03.366
44 Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
45 Adegoke O, Andersson J, Brodin H, et al. Review of laser powder bed fusion of gamma-prime-strengthened nickel-based superalloys [J]. Metals, 2020, 10: 996
doi: 10.3390/met10080996
46 Thomas E, Roman E, Andreas K. Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys [P]. US, 9670572-B2, 2017
47 Basak A, Acharya R, Das S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: Computational modeling, experimental process development, and process parameter optimization [J]. Metall. Mater. Trans., 2016, 47A: 3845
48 Megahed M, Mindt H W, N'Dri N, et al. Metal additive-manufacturing process and residual stress modeling [J]. Integr. Mater. Manuf. Innov., 2016, 5: 61
doi: 10.1186/s40192-016-0047-2
49 Carpenter K, Tabei A. On residual stress development, prevention, and compensation in metal additive manufacturing [J]. Materials, 2020, 13(2): 255
doi: 10.3390/ma13020255
50 Fang Z C, Wu Z L, Huang C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts [J]. Opt. Laser Technol., 2020, 129: 106283
doi: 10.1016/j.optlastec.2020.106283
51 Risse J. Additive manufacturing of nickel-base superalloy IN738LC by laser powder bed fusion [D]. Lehrstuhl: Lehrstuhl für Lasertechnik, 2019
52 Xu J H, Gruber H, Peng R L, et al. A novel γ′-strengthened nickel-based superalloy for laser powder bed fusion [J]. Materials, 2020, 13: 4930
doi: 10.3390/ma13214930
53 Bartlett J L, Croom B P, Burdick J, et al. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation [J]. Addit. Manuf., 2018, 22: 1.
54 Johnson L, Mahmoudi M, Zhang B, et al. Assessing printability maps in additive manufacturing of metal alloys [J]. Acta Mater., 2019, 176: 199
doi: 10.1016/j.actamat.2019.07.005
55 Engeli R. Selective laser melting & heat treatment of γ′ strengthened Ni-base superalloys for high temperature applications [D]. Zurich: ETH Zurich, 2017
56 Xu J Y, Ding Y T, Gao Y B, et al. Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting [J]. Mater. Des., 2021, 209: 109940
doi: 10.1016/j.matdes.2021.109940
57 Guo C, Zhou Y, Li X G, et al. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90: 45
doi: 10.1016/j.jmst.2021.03.006
58 Zhang S Y, Lin X, Wang L L, et al. Influence of grain inhomogeneity and precipitates on the stress rupture properties of Inconel 718 superalloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, A803: 140702
59 Papadakis L, Chantzis D, Salonitis K. On the energy efficiency of pre-heating methods in SLM/SLS processes [J]. Int. J. Adv. Manuf. Technol., 2018, 95: 1325
doi: 10.1007/s00170-017-1287-9
60 Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion [J]. Addit. Manuf., 2019, 27: 131
doi: 10.1016/j.addma.2019.02.020
61 Kempen K, Thijs L, Vrancken B, et al. Producing crack-free, high density M2 Hss parts by selective laser melting: Pre-heating the baseplate [A]. Proceedings of the 2013 International Solid Freeform Fabrication Symposium [C]. Austin: University of Texas at Austin, 2013: 131
62 Liu W B, Mo S D, Xie Y G, et al. Research progress of hot isostatic pressing to eliminate the pores in metal parts prepared by additive manufacturing [J]. Mater. Res. Appl., 2021, 15: 287
62 刘文彬, 莫仕栋, 谢月光 等. 热等静压消除金属增材制造构件孔隙的研究进展 [J]. 材料研究与应用, 2021, 15: 287
63 Atkinson H V, Davies S. Fundamental aspects of hot isostatic pressing: An overview [J]. Metall. Mater. Trans., 2000, 31A: 2981
64 Han Q Q, Mertens R, Montero-Sistiaga M L, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism [J]. Mater. Sci. Eng., 2018, A732: 228
65 He Q G, Liu J, Li L X, et al. Effect of hot isostatic pressing on microstructures and mechanical properties of IN738LC superalloy [J]. Mater. Sci. Forum, 2017, 898: 401
doi: 10.4028/www.scientific.net/MSF.898.401
66 Sentyurina Z A, Baskov F A, Loginov P A, et al. The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion [J]. Addit. Manuf., 2021, 37: 101629
67 Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
68 Vilanova M, Garciandia F, Sainz S, et al. The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy [J]. J. Mater. Process. Technol., 2022, 300: 117398
doi: 10.1016/j.jmatprotec.2021.117398
69 Zhou W Z, Zhu G L, Wang R, et al. Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A791: 139745
70 Chen L Y, Xu J Q, Choi H, et al. Rapid control of phase growth by nanoparticles [J]. Nat. Commun., 2014, 5: 3879
doi: 10.1038/ncomms4879
71 Cheng X P, Zhao Y N, Qian Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3 [J]. Mater. Sci. Eng., 2021, A824: 141867
72 Bandyopadhyay A, Traxel K D, Lang M, et al. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives [J]. Mater. Today, 2022, 52: 207
doi: 10.1016/j.mattod.2021.11.026
73 Sun Z J, Ma Y, Ponge D, et al. Thermodynamics-guided alloy and process design for additive manufacturing [J]. Nat. Commun., 2022, 13: 4361
doi: 10.1038/s41467-022-31969-y pmid: 35896545
74 Zhou W Z, Tian Y S, Tan Q B, et al. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion [J]. Addit. Manuf., 2022, 58: 103016
75 Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 807: 151662
doi: 10.1016/j.jallcom.2019.151662
76 Ackers M A, Messé O M D M, Hecht U. Novel approach of alloy design and selection for additive manufacturing towards targeted applications [J]. J. Alloys Compd., 2021, 866: 158965
doi: 10.1016/j.jallcom.2021.158965
77 Clare A T, Mishra R S, Merklein M, et al. Alloy design and adaptation for additive manufacture [J]. J. Mater. Process. Technol., 2022, 299: 117358
doi: 10.1016/j.jmatprotec.2021.117358
78 Knoll H, Ocylok S, Weisheit A, et al. Combinatorial alloy design by laser additive manufacturing [J]. Steel Res. Int., 2017, 88: 1600416
doi: 10.1002/srin.201600416
79 Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
80 Ghoussoub J N, Klupś P, Dick-Cleland W J B, et al. A new class of alumina-forming superalloy for 3D printing [J]. Addit. Manuf., 2022, 52: 102608
81 Yan W T, Lin S, Kafka O L, et al. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing [J]. Comput. Mech., 2018, 61: 521
doi: 10.1007/s00466-018-1539-z
82 Zhang N, Wang M H, Zhang S Y, et al. Review on key common technologies of metal additive manufacturing based on synchrotron radiation and neutron diffraction analysis [J]. Rare Met. Mater. Eng., 2022, 51: 2698
82 张 楠, 王淼辉, 张书彦 等. 基于同步辐射和中子衍射分析的金属增材制造关键共性问题研究进展 [J]. 稀有金属材料与工程, 2022, 51: 2698
83 Wu Z K, Zhang J, Wu S C, et al. Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components [J]. Nondestr. Test., 2020, 42(7): 46
83 吴正凯, 张 杰, 吴圣川 等. 同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用 [J]. 无损检测, 2020, 42(7): 46
84 Ioannidou C, König H H, Semjatov N, et al. In-situ synchrotron X-ray analysis of metal additive manufacturing: Current state, opportunities and challenges [J]. Mater. Des., 2022, 219: 110790
doi: 10.1016/j.matdes.2022.110790
85 du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights [J]. Mater. Des., 2020, 187: 108385
doi: 10.1016/j.matdes.2019.108385
86 Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
87 Yan W T, Ge W J, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting [J]. Acta Mater., 2017, 134: 324
doi: 10.1016/j.actamat.2017.05.061
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[10] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[11] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[12] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[13] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[14] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[15] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.