Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1653-1664    DOI: 10.11900/0412.1961.2018.00340
  材料与工艺 本期目录 | 过刊浏览 |
Inconel 718变形高温合金热加工组织演变与发展趋势
刘永长(), 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354
Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency
Yongchang LIU(), Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
全文: PDF(7140 KB)   HTML
摘要: 

本文首先针对Inconel 718合金的锻造工艺过程,较为系统地阐述了合金高温变形时的再结晶机制、晶粒长大、δ相形态控制以及存在的残余应力问题。基于选区激光熔化技术在航空发动机材料增材制造领域的潜在优势和应用前景,分析了选区激光熔化技术制造Inconel 718合金凝固组织和性能的各向异性,探讨了热处理工艺在消除有害相、改变组织结构及力学行为等方面的重要作用和局限性。结合高温服役过程的组织演变,分析了Inconel 718合金变形时涉及位错滑移、孪生、γ″相剪切方式的变形机制。最后,介绍了通过调整Inconel 718合金成分来改变强化相结构,从而进一步提高变形高温合金服役温度的有效尝试(如Allvac 718Plus合金的服役温度提高了55 ℃),指出了通过成分调整来获得热稳定性优异的γ″-γ'复合析出结构是新型变形镍基高温合金的重要发展方向。

关键词 Inconel 718合金再结晶选区激光熔化位错剪切机制γ″-γ'强化型合金;    
Abstract

Here some critical issues existed during forging process of Inconel 718 disks involving recrystallization mechanisms, grain growth, δ-phase morphology control and residual stress are explained. Based on the potential application prospect of selective laser melting in additive manufacture of aerocraft engine components, the specialized anisotropic microstructure and mechanical performance resulted from the rapid solidification process in selective laser melting are analyzed. Furthermore, the importance and difficulty of heat treatment in eliminating Laves-phase as well as tailoring substructure and related mechanical behavior are also discussed. The deformation mechanisms of Inconel 718 alloy at high temperature are illustrated in detail, comprising of dislocation planar slip, twinning and dislocation-shearing γ″ precipitates in complex modes. At last, a newly developed wrought nickel superalloy (Allvac 718Plus, with a increase in service temperature of 55 ℃ as compared to that of Inconel 718) is introduced, and some recent progresses aimed at modifying chemical compositions and phase compositions to improve service temperature on the basis of Inconel 718 alloy are also reviewed. The results indicate that the more stable γ″-γ' composite structure is important for the further design of next-generation wrought nickel superalloys.

Key wordsInconel 718 alloy    recrystallization    selective laser melting    dislocation-shearing mechanism    γ″-γ' strengthened superalloy;
收稿日期: 2018-07-23     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目Nos.51474156、51604193和U1660201以及国家高技术研究发展计划项目No.2015AA042504
作者简介:

作者简介 刘永长,男,1971年生,教授

引用本文:

刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metall Sin, 2018, 54(11): 1653-1664.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00340      或      https://www.ams.org.cn/CN/Y2018/V54/I11/1653

图1  Inconel 718合金的δ相锻造工艺示意图[23]
图2  再结晶组织对Inconel 718合金中δ相析出的影响[25]
图3  采用选区激光熔化(SLM)工艺成型Inconel 718合金的各向异性组织
Specimen ID SR/Q HIP/SC Homo/Q ST/Q Age 1 Age 2 UTS / MPa YS / MPa δ / %
554 - - - - 995.2±12.8 698.2±15.2 33.21±1.10
528 - - - - 720/8 - 1392.0±8.9 1204.1±8.6 17.32±0.71
527 - - - - 720/8 620/10 1739.5±17.7 1268.5±27.0 15.44±2.00
522 - - - 1010/1 720/8 620/10 1379.3±10.4 1237.8±13.4 19.49±0.54
553 1066/1.5 - - - - - 1171.4±12.8 859.5±22.9 34.34±1.52
515 1066/1.5 - - - 720/8 - 1330.8±21.4 1124.4±18.9 21.34±0.80
514 1066/1.5 - - - 720/8 620/10 1386.9±12.3 1200.6±9.5 20.78±0.25
509 1066/1.5 - - 1010/1 720/8 620/10 1390.2±8.1 1203.3±5.5 21.96±0.37
507 1066/1.5 1163/3 - 954/1 720/8 620/10 1384.7±6.2 1087.2±7.5 23.36±0.62
506 1066/1.5 1163/3 1163/1 954/1 720/8 620/10 1395.7±4.2 1110.9±7.4 23.61±0.36
表1  热处理工艺对SLM成型Inconel 718合金拉伸性能的影响[47]
Sample Building direction HT Creep test parameter Rupture time
h
Temperature / ℃ Stress / MPa
Sample 1 XY SRC 700 325 332
Sample 2 XY SRC 700 250 1201
Sample 3 Z SRC 700 325 712
Sample 4 Z SRC 700 250 2510
Sample 5 Z HT1 700 325 1012
Sample 6 Z HT2 700 325 1898
Sample 7 Z HT2 700 375 1143
表2  不同沉积方向和热处理工艺对SLM成型Inconel 718合金蠕变性能的影响[48]
图4  Inconel 718合金高温蠕变过程的基体变形特征
图5  Inconel 718合金高温蠕变时产生的孪晶
图6  Inconel 718合金组织中具有D022结构的γ"相
图7  Inconel 718合金组织中γ"和γ′相的位错剪切形貌
Alloy Cr Mo W Co Fe Nb Ti Al C P B Ni
718 18.1 2.9 - - 18 5.45 1.0 0.45 0.025 0.007 0.004 Bal.
718Plus 18.0 2.8 1 9 10 5.40 0.7 1.45 0.020 0.007 0.004 Bal.
表3  Allvac 718Plus高温合金与Inconel 718合金的名义成分对比[81]
[1] Liu Y C, Guo Q Y, Li C, et al.Recent progress on evolution of precipitates in Inconel 718 superalloy[J]. Acta Metall. Sin., 2016, 52: 1259(刘永长, 郭倩颖, 李冲等. Inconel 718高温合金中析出相演变研究进展[J]. 金属学报, 2016, 52: 1259)
[2] Xie X S, Dong J X, Fu S H, et al.Research and development of γ" and γ′ strengthened Ni-Fe base superalloy GH4169[J]. Acta Metall. Sin., 2010, 46: 1289(谢锡善, 董建新, 付书红等. γ"γ′相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46: 1289)
[3] Paulonis D F, Oblak J M, Duvall D S.Precipitation in nickel-base alloy 718[J]. ASM Trans. Quart., 1969, 62: 611
[4] Chaturvedi M C, Han Y F.Strengthening mechanisms in Inconel 718 superalloy[J]. Met. Sci., 1983, 17: 145
[5] Oblak J M, Paulonis D F, Duvall D S.Coherency strengthening in Ni base alloys hardened by D022 γ" precipitates[J]. Metall. Trans., 1974, 5: 143
[6] Barker J F, Ross E W, Radavich J F.Long time stability of Inconel 718[J]. J. Met., 1970, 22: 31
[7] Mei Y P, Liu Y C, Liu C X, et al.Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J]. Mater. Des., 2016, 89: 964
[8] Zhang H J, Li C, Liu Y C, et al.Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment[J]. J. Alloys Compd., 2017, 716: 65
[9] Zhang H J, Li C, Guo Q Y, et al.Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 ℃: The role of δ phase[J]. Mater. Sci. Eng., 2018, A722: 136
[10] Thomas J P, Montheillet F, Dumont C. Microstructural evolutions of superalloy 718 during dynamic and metadynamic recrystallizations [J]. Mater. Sci. Forum, 2003, 426-432: 791
[11] Lin Y C, Wu X Y, Chen X M, et al.EBSD study of a hot deformed nickel-based superalloy[J]. J. Alloys Compd., 2015, 640: 101
[12] Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137
[13] Thomas J P, Bauchet E, Dumont C, et al.EBSD investigation and modeling of the microstructural evolutions of superalloy 718 during hot deformation [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 959
[14] Zhang J M, Gao Z Y, Zhuang J Y, et al.Mathematical modeling of the hot-deformation behavior of superalloy IN718[J]. Metall. Mater. Trans., 1999, 30A: 2701
[15] De Jaeger J, Solas D, Fandeur O, et al.3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718[J]. Mater. Sci. Eng., 2015, A646: 33
[16] Schwant R C, Thamboo S V, Anderson A F, et al.Large 718 forgings for land based turbines [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1997: 141
[17] Uginet J F, Jackson J J.Alloy 718 forging development for large land-based gas turbines [A]. Superalloys 718, 625, 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 57
[18] Uginet J F, Pieraggi B.Study of secondary grain growth on 718 alloy [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1997: 343
[19] Zouari M, Logé R, Bozzolo N.In situ characterization of Inconel 718 post-dynamic recrystallization within a scanning slectron microscope[J]. Metals, 2017, 7: 476
[20] Zouari M, Logé R E, Beltran O, et al.Multipass forging of Inconel 718 in the delta-supersolvus domain: Assessing and modeling microstructure evolution [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 12001
[21] Chen X M, Lin Y C, Wu F.EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy[J]. J. Alloys Compd., 2017, 724: 198
[22] Desvallées Y, Bouzidi M, Bois F, et al.Delta phase in Inconel 718: Mechanical properties and forging process requirements [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994: 281
[23] Ruiz C, Obabueki A, Gillespie K.Evaluation of the microstructure and mechanical properties of delta processed alloy 718 [A]. Superalloys 1992[C]. Champion, PA: TMS, 1992: 33
[24] Watson R, Preuss M, da Fonseca J Q, et al. Characterization of abnormal grain coarsening in Alloy 718 [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 07004
[25] Zhang H J, Li C, Guo Q Y, et al.Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization[J]. Mater. Charact., 2017, 133: 138
[26] Dye D, Conlon K T, Reed R C.Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718[J]. Metall. Mater. Trans., 2004, 35A: 1703
[27] Dahan Y, Nouveau S, Georges E, et al.Residual stresses in Inconel 718 engine disks [A]. 2nd European Symposium on Superalloys and Their Applications[C]. Giens, France: EDP Sciences, 2014: 10003
[28] Rist M A, James J A, Tin S, et al.Residual stresses in a quenched superalloy turbine disc: Measurements and modeling[J]. Metall. Mater. Trans., 2006, 37A: 459
[29] Qin H L, Bi Z N, Yu H Y, et al.Influence of stress on γ″ precipitation behavior in Inconel 718 during aging[J]. J. Alloys Compd., 2018, 740: 997
[30] Qin H L, Bi Z N, Yu H Y, et al.Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy[J]. Mater. Sci. Eng., 2018, A728: 183
[31] Sun S B, Zheng L J, Liu J H, et al.Selective laser melting of an Al-Fe-V-Si alloy: Microstructural evolution and thermal stability[J]. J. Mater. Sci. Technol., 2017, 33: 389
[32] Murr L E.Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication[J]. J. Mater. Sci. Technol., 2016, 32: 987
[33] Song K, Yu K, Lin X, et al.Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718[J]. Acta Metall. Sin., 2015, 51: 935(宋衎, 喻凯, 林鑫等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报, 2015, 51: 935)
[34] Yap C Y, Chua C K, Dong Z L, et al.Review of selective laser melting: Materials and applications[J]. Appl. Phys. Rev., 2015, 2: 041101
[35] Wang X Q, Gong X B, Chou K.Review on powder-bed laser additive manufacturing of Inconel 718 parts[J]. Proc. Inst. Mech. Eng., 2016, 231B: 1890
[36] Lu Z L, Cao J W, Jing H, et al.Review of main manufacturing processes of complex hollow turbine blades[J]. Virtual Phys. Prototyping, 2013, 8: 87
[37] Zhang J L, Guo Q Y, Liu Y C, et al.Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy[J]. Int. J. Miner. Metall. Mater., 2016, 239: 1087
[38] Zhang H J, Li C, Liu Y C, et al.Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Mater. Sci. Eng., 2016, A677: 515
[39] Lingenfelter A.Welding of Inconel alloy 718: A historical overview [A]. Superalloy 718—Metallurgy and Applications[C]. Pittsburgh, PA: TMS, 1989: 673
[40] Chlebus E, Gruber K, Ku?nicka B, et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J]. Mater. Sci. Eng., 2015, A639: 647
[41] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
[42] Wang Z M, Guan K, Gao M, et al.The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. J. Alloys Compd., 2012, 513: 518
[43] Parimi L L, Ravi G A, Clark D, et al.Microstructural and texture development in direct laser fabricated IN718[J]. Mater. Charact., 2014, 89: 102
[44] Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al.Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Mater. Sci. Eng., 2017, A689: 220
[45] Jia Q B, Gu D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties[J]. J. Alloys Compd., 2014, 585: 713
[46] Trosch T, Str??ner J, V?lkl R, et al.Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Mater. Lett., 2016, 164: 428
[47] Schneider J, Lund B, Fullen M.Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Addit. Manuf., 2018, 21: 248
[48] Hautfenne C, Nardone S, Bruycher E D.Influence of heat treatments and build orientation on the creep strength of additive manufactured IN718 [A]. 4th International ECCC Conference[C]. Düsseldorf, Germany: Steel Institute VDEh, 2017: 1
[49] Pr?bstle M, Neumeier S, Hopfenmüller J, et al.Superior creep strength of a nickel-based superalloy produced by selective laser melting[J]. Mater. Sci. Eng., 2016, A674: 299
[50] Yoo Y S J, Book T A, Sangid M D, et al. Identifying strain localization and dislocation processes in fatigued Inconel 718 manufactured from selective laser melting[J]. Mater. Sci. Eng., 2018, A724: 444
[51] Kone?ná R, Kunz L, Nicoletto G, et al.Long fatigue crack growth in Inconel 718 produced by selective laser melting[J]. Int. J. Fatigue, 2016, 92: 499
[52] Zhou Z J, Hua X, Li C P, et al.The effects of texture on the low cycle fatigue property of Inconel 718 by selective laser melting [A]. 12th International Fatigue Congress[C]. Poitiers Futuroscope, France: EDP Sciences, 2018: 02007
[53] Thijs L, Sistiaga M L M, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Mater., 2013, 61: 4657
[54] Popovich V A, Borisov E V, Popovich A A, et al.Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties[J]. Mater. Des., 2017, 114: 441
[55] Ni M, Chen C, Wang X J, et al.Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Mater. Sci. Eng., 2017, A701: 344
[56] Deng D Y, Peng R L, Brodin H, et al.Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments[J]. Mater. Sci. Eng., 2018, A713: 294
[57] Sangid M D, Book T A, Naragani D, et al.Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing[J]. Addit. Manuf., 2018, 22: 479
[58] Reed R C, translated by He Y H, Zhao W X, Qu S Y. Superalloys Fundamentals and Applications [M]. Beijing: China Machine Press, 2016: 224(Reed R C著, 何玉怀, 赵文侠, 曲士昱译. 高温合金基础与应用 [M]. 北京: 机械工业出版社, 2016: 224)
[59] Xiao L, Chen D L, Chaturvedi M C.Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation[J]. Scr. Mater., 2005, 52: 603
[60] Sundararaman M, Mukhopadhyay P, Banerjee S.Deformation behaviour of γ″ strengthened Inconel 718[J]. Acta Metall., 1988, 36: 847
[61] McAllister D, Lv D, Deutchman H, et al. Characterization and modeling of deformation mechanisms in Ni-base superalloy 718 [A]. Superalloys 2016[C]. Champion, PA: TMS, 2016: 821
[62] Tanimura M, Koyama Y.The role of antiphase boundaries in the kinetic process of the L12→D022 structural change of an Ni3Al0.45V0.50 alloy[J]. Acta Mater., 2006, 54: 4385
[63] Sundararaman M, Mukhopadhyay P, Banerjee S.Some aspects of the precipitation of metastable intermetallic phases in Inconel 718[J]. Metall. Trans., 1992, 23A: 2015
[64] Yuan Y, Gu Y F, Zhong Z H.Controlling the deformation mechanism in disk superalloys at low and intermediate temperatures [A]. Superalloys 2012[C]. Champion, PA: TMS, 2012: 35
[65] Kovarik L, Unocic R R, Li J, et al.Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys[J]. Prog. Mater. Sci., 2009, 54: 839
[66] Kear B H, Oblak J M, Giamei A F.Stacking faults in gamma prime Ni3(Al, Ti) precipitation hardened nickel-base alloys[J]. Metall. Trans., 1970, 1: 2477
[67] Raynor D, Silcock J M.Strengthening Mechanisms in γ′-precipitating alloys[J]. Met. Sci. J., 1970, 4: 121
[68] Kear B H, Oblak J M.Deformation modes in γ′ precipitation hardened nickel-base alloys[J]. J. Phys. Colloq., 1974, 35: 35
[69] Jena A K.On the stability of precipitating phases in nickel base superalloys[J]. Mater. Sci. Forum, 1985, 3: 281
[70] Pope D P, Ezz S S.Mechanical properties of Ni3AI and nickel-base alloys with high volume fraction of γ′[J]. Int. Met. Rev., 1984, 29: 136
[71] McAllister D, Lv D, Peterson B, et al. Lower temperature deformation mechanisms in a γ″-strengthened Ni-base superalloy[J]. Scr. Mater., 2016, 115: 108
[72] Lv D C, McAllister D, Mills M J, et al. Deformation mechanisms of D022 ordered intermetallic phase in superalloys[J]. Acta Mater., 2016, 118: 350
[73] Phillips P J, McAllister D, Gao Y, et al. Nano γ′/γ″ composite precipitates in Alloy 718[J]. Appl. Phys. Lett., 2012, 100: 211913
[74] Schafrik R E, Ward D D, Groh J R.Application of alloy 718 in GE aircraft engines: Past, present and next five years [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 2001: 1
[75] Wang H P, Zheng C H, Zou P F, et al.Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states[J]. J. Mater. Sci. Technol., 2018, 34: 436
[76] Furrer D, Fecht H.Ni-based superalloys for turbine discs[J]. JOM, 1999, 51(1): 14
[77] Collier J P, Wong S H, Phillips J C, et al.The effect of varying AI, Ti, and Nb content on the phase stability of Inconel 718[J]. Metall. Trans., 1988, 19A: 1657
[78] Cozar R, Pineau A.Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type Alloys[J]. Metall. Trans., 1973, 4: 47
[79] Groh J R, Radavich J F.Effects of iron, nickel, and cobalt on precipitation hardening of alloy 718 [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 1991: 351
[80] Kennedy R L.Allvac? 718PlusTM, superalloy for the next forty years [A]. Superalloys 718, 625 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 1
[81] Cao W D, Kennedy R L.Role of chemistry in 718-type alloys—Allvac 718Plus alloy development [A]. Superalloys 2004[C]. Champion, PA: TMS, 2004: 91
[82] Ott E A, Groh J, Sizek H.Metals affordability initiative: Application of Allvac alloy 718PlusTM for aircraft engine static structural components [A]. Superalloys 718, 625, 706 and Derivatives[C]. Pittsburgh, PA: TMS, 2005: 35
[83] Cao W D, Kennedy R L.New developments in wrought 718-type superalloys[J]. Acta Metall. Sin.(Engl. Lett.), 2005, 18: 39
[84] Srinivasan D, LawLess L U, Ott E A. Experimental determination of TTT diagram for alloy 718Plus [A]. 12th International Symposium on Superalloys[C]. Champion, PA: TMS, 2012: 759
[85] Pickering E J, Mathur H, Bhowmik A, et al.Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater., 2012, 60: 2757
[86] Xie X S, Wang G L, Dong J X, et al.Structure stability study on a newly developed nickel-base superalloy-Allvac 718Plus [A]. Superalloys 718, 625, 706 and Various Derivatives[C]. Pittsburgh, PA: TMS, 2005: 179
[87] Krakow R, Johnstone D N, Eggeman A S, et al.On the crystallography and composition of topologically close-packed phases in ATI 718Plus? [J]. Acta Mater., 2017, 130: 271
[88] Axter S E, Polonis D H.The influence of cobalt, iron and aluminum on the precipitation of metastable phases in the Ni-Ta system[J]. Mater. Sci. Eng., 1983, 60: 151
[89] He J, Han G, Fukuyama S, et al.Interfaces in a modified Inconel 718 with compact precipitates[J]. Acta Mater., 1998, 46: 215
[90] Manriquez J A, Bretz P L, Rabenberg L, et al.The high temperature stability of In718 derivative alloys [A]. Superalloys 1992[C]. Champion, PA: TMS, 1992: 507
[91] Detor A J, DiDomizio R, Moshtaghin R S, et al. Enabling large superalloy parts using compact coprecipitation of γ′ and γ″[J]. Metall. Mater. Trans., 2018, 49A: 708
[92] Mignanelli P M, Jones N G, Pickering E J, et al.Gamma-gamma prime-gamma double prime dual-superlattice superalloys[J]. Scr. Mater., 2017, 136: 136
[93] Mignanelli P M, Jones N G, Hardy M C, et al.On the time-temperature-transformation behavior of a new dual-superlattice nickel-based superalloy[J]. Metall. Mater. Trans., 2018, 49A: 699
[1] 李彦默, 郭小辉, 陈斌, 李培跃, 郭倩颖, 丁然, 余黎明, 苏宇, 李文亚. GH4169合金与S31042钢线性摩擦焊接头组织及力学性能[J]. 金属学报, 2021, 57(3): 363-374.
[2] 刘健, 彭钦, 谢建新. 选区激光熔化René 88DT高温合金的晶粒组织及冶金缺陷调控[J]. 金属学报, 2021, 57(2): 191-204.
[3] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[4] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] 郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
[6] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[7] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[8] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[9] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[12] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[13] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[14] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[15] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.