|
|
铸造高温合金研发中的应用基础研究 |
张健( ), 楼琅洪 |
中国科学院金属研究所 沈阳 110016 |
|
Basic Research in Development and Applicationof Cast Superalloy |
Jian ZHANG( ), Langhong LOU |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张健, 楼琅洪. 铸造高温合金研发中的应用基础研究[J]. 金属学报, 2018, 54(11): 1637-1652.
Jian ZHANG,
Langhong LOU.
Basic Research in Development and Applicationof Cast Superalloy[J]. Acta Metall Sin, 2018, 54(11): 1637-1652.
[1] | Cahn R W.The Coming of Materials Science [M]. Amsterdam: Pergamon Press, 2001: 352 | [2] | Schafrik R E.Materials for a non-steady-state world[J]. Metall. Mater. Trans., 2016, 47B: 1505 | [3] | Reed R C, Moverare J J, Sato A, et al.A new single crystal superalloy for power generation applications [A]. Superalloys 2012: 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 197 | [4] | Mottura A, Warnken N, Miller M K, et al.Atom probe tomography analysis of the distribution of rhenium in nickel alloys[J]. Acta Mater., 2010, 58: 931 | [5] | Ding Q Q, Li S Z, Chen L Q, et al.Re segregation at interfacial dislocation network in a nickel-based superalloy[J]. Acta Mater., 2018, 154: 137 | [6] | Tang Y L, Huang M, Xiong J C, et al.Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress[J]. Acta Mater., 2017, 126: 336 | [7] | Reed R C, Mottura A, Crudden D J.Alloys-by-design: Towards optimization of compositions of nickel-based superalloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 15 | [8] | Stewart C A, Rhein R K, Suzuki A, et al.Oxide scale formation in novel γ-γ' cobalt-based alloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 991 | [9] | Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of nickel-base single crystal superalloys [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 177 | [10] | Chang J X, Wang D, Liu X G, et al.Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys[J]. Metall. Mater. Trans., 2018, 49A: 4343 | [11] | Chang J X, Wang D, Liu T, et al.Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy[J]. Corros. Sci., 2015, 98: 585 | [12] | Chang J X, Wang D, Zhang G, et al.Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys[J]. Corros. Sci., 2017, 117: 35 | [13] | Campbell C E, Boettinger W J, Kattner U R.Development of a diffusion mobility database for Ni-base superalloys[J]. Acta Mater., 2002, 50: 775 | [14] | Sarioglu C, Stinner C, Blachere J R, et al.The control of sulfur content in nickel-base single crystal superalloys and its effects on cyclic oxidation resistance [A]. Superalloys 1996: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1996: 71 | [15] | Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge, New York: Cambridge University Press, 2006: 172 | [16] | Seth B B.Superalloys-the utility gas turbine perspective [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 3 | [17] | Li H, Wang L, Lou L H.Dendritic coarsening of γ' phase in a directionally solidified superalloy during 24,000 h of exposure at 1173 K[J]. Mater. Charact., 2010, 61: 502 | [18] | Jiang X W, Wang D, Xie G, et al.The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy[J]. Metall. Mater. Trans., 2014, 45A: 6016 | [19] | Zhang H W, Qin X Z, Wu Y S, et al.Effects of Cr content on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy during long-term thermal exposure[J]. Mater. Sci. Eng., 2018, A718: 449 | [20] | Pal J, Srinivasan D, Cheng E.Effect of rejuvenation heat treatment and aging on the microstructural evolution in Rene N5 single crystal Ni base superalloy blades [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 285 | [21] | Yao Z, Degnan C C, Jepson M A E, et al. Effect of rejuvenation heat treatments on gamma prime distributions in a Ni based superalloy for power plant applications[J]. Mater. Sci. Technol., 2013, 29: 775 | [22] | Qin X Z, Guo J T, Yuan C, et al.Effects of long-term thermal exposure on the microstructure and properties of a cast Ni-base superalloy[J]. Metall. Mater. Trans., 2007, 38A: 3014 | [23] | Jiang X W, Wang D, Wang D, et al.The effect of reheat treatment on microstructure and stress rupture property of a directionally solidified nickel-based superalloy after long-term thermal exposure[J]. Mater. Sci. Eng., 2017, A694: 48 | [24] | Huang Q Y, Li H K.Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 385(黄乾尧, 李汉康. 高温合金[M]. 北京: 冶金工业出版社, 2000: 385) | [25] | Koizumi Y, Harada H, Kobayashi T, et al.Long-term creep property of a second-generation nickel-base single-crystal superalloy, TMS82+[J]. J. Jpn. Inst. Met., 2005, 69: 743 | [26] | Li X W, Wang L, Dong J S, et al.Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment[J]. Metall. Mater. Trans., 2017, 48A: 2682 | [27] | Wan J S, Yue Z F, Lu Z Z.Casting microporosity growth in single-crystal superalloys by a three-dimensional unit cell analysis[J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 875 | [28] | Le Graverend J B, Adrien J, Cormier J. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage[J]. Mater Sci Eng., 2017, A695: 367 | [29] | Chen Q Z, Kong Y H, Jones C N, et al.Porosity reduction by minor additions in RR2086 superalloy[J]. Scr. Mater., 2004, 51: 155 | [30] | Shi Q Y, Li X H, Zheng Y R, et al.Formation of solidification and homogenisation micropores in two single crystal superalloys produced by HRS and LMC processes[J]. Acta Metall. Sin., 2012, 48: 1237(石倩颖, 李相辉, 郑运荣等. HRS和LMC工艺制备的两种镍基单晶高温合金铸态及固溶微孔的形成[J]. 金属学报, 2012, 48: 1237) | [31] | Matuszewski K, Matysiak H, Jaroszewicz J, et al.Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4[J]. Int. J. Cast. Met. Res., 2014, 27: 329 | [32] | Liu L, Husseini N S, Torbet C J, et al.In situ synchrotron X-ray imaging of high-cycle fatigue crack propagation in single-crystal nickel-base alloys[J]. Acta Mater., 2011, 59: 5103 | [33] | Li J R, Zhao J Q, Liu S Z, et al.Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008: Proceedings of the 11th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2008: 443 | [34] | Chen Q Z, Jones C N, Knowles D M.The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties[J]. Mater. Sci. Eng., 2004, A385: 402 | [35] | Wang Y, Wang D, Zhang G, et al.Characterization of tilt and twist low angle grain boundaries and their effects on intermediate-temperature creep deformation behaviour [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 757 | [36] | Ross E W, O'Hara K S. René N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength [A]. Superalloys 1996: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1996: 19 | [37] | Shah D M, Cetel A.Evaluation of PWA1483 for large single crystal IGT blade applications [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 295 | [38] | Zhao Y S, Zhao Y S, Zhang J, et al.Effect of Hf and B on transverse and longitudinal creep of a Re-containing nickel-base bicrystal superalloy [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys[C]. Warrendale, PA: TMS, 2016: 683 | [39] | Stinville J C, Gallup K, Pollock T M.Transverse creep of nickel-base superalloy bicrystals[J]. Metall. Mater. Trans., 2015, 46A: 2516 | [40] | Shu Y F, Zhu J X, Zhang J, et al.Back reflection structure digital X-ray crystal orientation device and X-ray detector thereof [P]. Chin Pat, 201510998096.X, 2016(舒岩峰, 朱锦霞, 张健等. 背反射结构数字化X射线晶体定向仪及其X射线探测器 [P]. 中国专利, 201510998096.X, 2016) | [41] | Tao C H, Zhang W F, Shi H J, et al.Recrystallization of Directionally Solidified Superalloy [M]. Beijing: National Defense Industry Press, 2007: 187(陶春虎, 张卫方, 施惠基等. 定向凝固高温合金的再结晶 [M]. 北京: 国防工业出版社, 2007: 187) | [42] | B?rgel R, Portella P D, Preuhs J.Recrystallization in single crystals of nickel base superalloys [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale: TMS, 2000: 229 | [43] | Sun Z G.Recrystallization behaviour of Ni-base superalloy DZ17G [D]. Shenyang: Northeastern University, 2007(孙志国. DZ17G镍基高温合金再结晶行为研究 [D]. 沈阳: 东北大学, 2007) | [44] | Wang L, Pyczak F, Zhang J, et al.Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4[J]. Mater. Sci. Eng., 2012, A532: 487 | [45] | Wang L, Xie G, Zhang J, et al.On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy[J]. Scr. Mater., 2006, 55: 457 | [46] | Wang L, Xie G, Lou L H.Effect of carbon content on the recrystallization of a single crystal nickel-based superalloy[J]. Mater. Lett., 2013, 109: 154 | [47] | Mathur H N, Panwisawas C, Jones C N, et al.Nucleation of recrystallisation in castings of single crystal Ni-based superalloys[J]. Acta Mater., 2017, 129: 112 | [48] | Xie G, Zhang J, Lou L H.Effect of heat treatment atmosphere on surface recrystallization of a directionally solidified Ni-base superalloy[J]. Scr. Mater., 2008, 59: 858 | [49] | Xie G, Wang L, Zhang J, et al.Orientational dependence of recrystallization in an Ni-base single-crystal superalloy[J]. Scr. Mater., 2012, 66: 378 | [50] | Zambaldi C, Roters F, Raabe D, et al. Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy [J]. Mater. Sci. Eng., 2007, A454-455: 433 | [51] | Pu S, Xie G, Zheng W, et al.Effect of W and Re on deformation and recrystallization of solution heat treated Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 239(濮晟, 谢光, 郑伟等. W和Re元素对固溶态镍基单晶高温合金变形和再结晶的影响[J]. 金属学报, 2015, 51: 239) | [52] | Xie G, Wang L, Zhang J, et al.Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy[J]. Metall. Mater. Trans., 2008, 39A: 206 | [53] | Xie G, Wang L, Zhang J, et al.Intermediate temperature creep of directionally solidified Ni-based superalloy containing local recrystallization[J]. Mater. Sci. Eng., 2011, A528: 3062 | [54] | Xie G, Wang L, Zhang J, et al.High temperature creep of directionally solidified Ni base superalloys containing local recrystallization [A]. Superalloys 2008: Proceedings of the 11th International Symposium on Superalloys[C]. Warrendale: TMS, 2008: 453 | [55] | Zheng Y R, Ruan Z C, Wang S C.Effect of surface recrystallization on the endurance strength of DZ22[J]. Acta Metall. Sin., 1995, 31(suppl.): 325(郑运荣, 阮中慈, 王顺才. DZ22合金的表层再结晶及其对持久性能的影响[J]. 金属学报, 1995, 31(增刊): 325) | [56] | Khan T, Caron P, Nakagawa Y G.Mechanical behavior and processing of DS and single crystal superalloys[J]. JOM, 1986, 38(7): 16 | [57] | Wang D L.Recrystallization of several Ni-base superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2006(王东林. 几种镍基高温合金再结晶问题的研究 [D]. 沈阳: 中国科学院金属研究所, 2006) | [58] | Meng J, Jin T, Sun X F, et al.Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy[J]. Mater. Sci. Eng., 2010, A527: 6119 | [59] | Zhang B, Lu X, Liu D L, et al.Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy[J]. Mater. Sci. Eng., 2012, A551: 149 | [60] | Shi Z X, Liu S Z, Wang X G, et al.Effects of heat treatment on surface recrystallization and stress rupture properties of a fourth-generation single-crystal superalloy after grit blasting[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 614 | [61] | Ma X, Shi H J, Gu J, et al.Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy[J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 340 | [62] | Okazaki M, Hiura T, Suzuki T.Effect of local cellular transformation on fatigue small crack growth in CMSX-4 and CMSX-2 at high temperature [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale: TMS, 2000: 505 | [63] | Goodlet B R, Rettberg L H, Pollock T M.Resonant ultrasound spectroscopy for defect detection in single crystal superalloy castings [A]. Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2016: 303 | [64] | Panwisawas C, Mathur H, Gebelin J C, et al.Prediction of recrystallization in investment cast single-crystal superalloys[J]. Acta Mater., 2013, 61(1): 51 | [65] | Corrigan J, Vogt R G, Mihalisin J R.Single crystal superalloy articles with reduced grain recrystallization [P]. Europe Pat, EP 1038982A1, 2000 | [66] | Salkeld R W, Field T T, Ault E A.Preparation of single crystal superalloys for post-casting heat treatment [P]. US Pat, 5413648, 1995 | [67] | Xie G, Zhang J, Lou L H.Effect of cyclic recovery heat treatment on surface recrystallization of a directionally solidified superalloy[J]. Prog. Nat. Sci. Mater. Int., 2011, 21: 491 | [68] | Bhaumik S K, Bhaskaran T A, Rangaraju R, et al.Failure of turbine rotor blisk of an aircraft engine[J]. Eng. Fail. Anal., 2002, 9: 287 | [69] | Liu L, Huang T W, Xiong Y H, et al.Grain refinement of superalloy K4169 by addition of refiners: Cast structure and refinement mechanisms[J]. Mater. Sci. Eng., 2005, A394: 1 | [70] | Yin F S, Sun X F, Li J G, et al.Effects of melt treatment on the cast structure of M963 superalloy[J]. Scr. Mater., 2003, 48: 425 | [71] | Brinegar J R, Chamberlain K R, Vresics J J, et al.Method of forming a fine-grained equiaxed casting [P]. US Pat, 4832112, 1989 | [72] | Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321 | [73] | Feng X H, Yang Y S.Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current[J]. J. Cryst. Growth, 2011, 334: 170 | [74] | Ma X P, Li Y J, Yang Y S.Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417[J]. J. Mater. Res., 2009, 24: 2670 | [75] | Flemings M C.Behavior of metal alloys in the semisolid state[J]. Metall. Mater. Trans., 1991, 22A: 957. | [76] | Fan Z.Semisolid metal processing[J]. Int. Mater. Rev., 2002, 47: 49 | [77] | Pollock T M, Murphy W H, Goldman E H, et al.Grain defect formation during directional solidification of nickel base single crystals [A]. Superalloys 1992: Proceedings of the Eighth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 1992: 125 | [78] | Shi Z X, Liu S Z, Li J R.Sliver formation mechanism of single crystal superalloy during directional solidification proscess[J]. Hot Working Technol., 2013, 42(13): 31(史振学, 刘世忠, 李嘉荣. 单晶高温合金定向凝固过程中条带的形成机制[J]. 热加工工艺, 2013, 42(13): 31) | [79] | Aveson J W, Tennant P A, Foss B J, et al.On the origin of sliver defects in single crystal investment castings[J]. Acta Mater., 2013, 61: 5162 | [80] | Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287 | [81] | Aveson J W.Studying flow effects on dendrite fragmentation using Rayleigh-Bénard convection[J]. Mater. Sci. Technol., 2012, 28: 1014 | [82] | Van Hoose J R, Grugel R N, Tewari S N, et al. Observation of misoriented tertiary dendrite arms during controlled directional solidification in aluminum-7 Wt pct silicon alloys[J]. Metall. Mater. Trans., 2012, 43A: 4724 | [83] | Zhang J, Lou L H.Directional solidification assisted by liquid metal cooling[J]. J. Mater. Sci. Technol., 2007, 23: 289 | [84] | Liu L, Sun D J, Huang T W, et al.Directional solidification under high thermal gradient and its application in superalloys processing[J]. Acta Metall. Sin., 2018, 54: 615(刘林, 孙德建, 黄太文等. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54: 615) | [85] | Elliott A J, Pollock M T, Tin S, et al.Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment[J]. Metall. Mater. Trans., 2004, 35A: 3221 | [86] | Liu C, Li K W, Shen J, et al.Improved castability of directionally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metall. Mater. Trans., 2012, 43A: 405 | [87] | Elliott A J, Karney G B, Gigliotti M F X, et al. Issues in processing by the liquid-Sn assisted directional solidification technique [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 421 | [88] | Lohmüeller A, E?er W, Go?mann J, et al.Improved quality and economics of investment castings by liquid metal cooling—The selection of cooling media [A]. Superalloys 2000: Proceedings of the Ninth International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2000: 181 | [89] | Shen J, Xu Z G, Lu Y Z, et al.Reaction of Ni-based superalloy with liquid Sn during liquid-metal-cooled directional solidification[J]. Metall. Mater. Trans., 2018, 49A: 4003 | [90] | Tao C H.Failure Analysis and Prevention for Rotor in Aero-Engine [M]. Beijing: National Defense Industry Press, 2000: 6(陶春虎. 航空发动机转动部件的失效与预防 [M]. 北京: 国防工业出版社, 2000: 6) | [91] | Carter T J.Common failures in gas turbine blades[J]. Eng. Fail. Anal., 2005, 12: 237 | [92] | Lee H S, Yoo K B, Kim D S, et al.Degradation of thermal barrier coated superalloy component during service[J]. J. Fail. Anal. Prev., 2007, 7: 250 | [93] | Liburdi J, Lowden P, Nagy D, et al.Practical experience with the development of superalloy rejuvenation [A]. The ASME Turbo Expo[C]. New York: ASME, 2009: 1 | [94] | Viswanathan R, Dolbec A C.Life assessment technology for combustion turbine blade[J]. J. Eng. Gas Turbines Power, 1987, 109: 115 | [95] | Stevens R A, Flewitt P E J. The dependence of creep rate on microstructure in a γ' strengthened superalloy[J]. Acta Metall., 1981, 29: 867 | [96] | Sun E, Heffernan T, Helmink R.Stress rupture and fatigue in thin wall single crystal superalloys with cooling holes [A]. Superalloys 2012: Proceedings of the 12th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2012: 353 | [97] | Srivastava A, Gopagoni S, Needleman A, et al.Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy[J]. Acta Mater., 2012, 60: 5697 | [98] | Seetharaman V, Cetel A D.Thickness debit in creep properties of PWA 1484 [A]. Superalloys 2004: Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 207 | [99] | Dryepondt S, Monceau D, Crabos F, et al.Static and dynamic aspects of coupling between creep behavior and oxidation on MC2 single crystal superalloy at 1150 ℃[J]. Acta Mater., 2005, 53: 4199 | [100] | Stowell E Z.Stress and strain concentration at a circular hole in an infinite plate [R]. Washington: National Advisory Committee for Aeronautics, 1950 | [101] | Yu Q M, Yue Z F, Wen Z X.Creep damage evolution in a modeling specimen of nickel-based single crystal superalloys air-cooled blades[J]. Mater. Sci. Eng., 2008, A477: 319 | [102] | Zhang Y Y, Qiu W H, Shi H J, et al.Effects of secondary orientations on long fatigue crack growth in a single crystal superalloy[J]. Eng. Fract. Mech., 2015, 136: 172 | [103] | Suzuki S, Sakaguchi M, Inoue H.Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations[J]. Mater. Sci. Eng., 2018, A724: 559 | [104] | Latief F H, Kakehi K, Murakami H.Anisotropic creep properties of aluminized Ni-based single-crystal superalloy at intermediate and high temperatures[J]. Scr. Mater., 2013, 68: 126 | [105] | Latief F H, Kakehi K, Sherif E S M. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations[J]. Prog. Nat. Sci. Mater. Int., 2014, 24: 163 | [106] | Wen Z X, Mao H Z, Yue Z F, et al.The Influence of crystal orientation on vibration characteristics of DD6 nickel-base single crystal superalloy turbine blade[J]. J. Mater. Eng. Perform., 2014, 23: 372 | [107] | Zhou Z J, Wang L, Wang D, et al.Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys[J]. Mater. Sci. Eng., 2016, A659: 130 | [108] | Zhou Z J, Liu T, Pu S, et al.Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy[J]. J. Alloys Compd., 2015, 647: 802 | [109] | Kakehi K.Effect of plastic anisotropy on tensile strength of single crystals of an Ni-based superalloy[J]. Scr. Mater., 1999, 42: 197 | [110] | Zhou Z J, Wang L, Wen J L, et al.Effect of skew angle of holes on the tensile behavior of a Ni-base single crystal superalloy[J]. J. Alloys Compd., 2015, 628: 158 | [111] | Wang L, Zhou Z J, Zhang S H, et al.Crack initiation and propagation around holes of Ni-based single crystal superalloy during thermal fatigue cycle[J]. Acta Metall. Sin., 2015, 51: 1273(王莉, 周忠娇, 张少华等. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51: 1273) | [112] | Zhou Z J, Yu D Q, Wang L, et al.Effect of skew angle of holes on the thermal fatigue behavior of a Ni-based single crystal superalloy[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 185 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|