Please wait a minute...
金属学报  2018, Vol. 54 Issue (8): 1113-1121    DOI: 10.11900/0412.1961.2017.00506
  本期目录 | 过刊浏览 |
预变形温度对纳米贝氏体相变动力学及组织的影响
徐士新1,2,3(), 余伟2, 李舒笳1, 王坤1, 孙齐松1
1 首钢集团有限公司技术研究院 北京 100043
2 北京科技大学工程技术研究院 北京 100083
3 首钢集团有限公司绿色可循环钢铁流程北京市重点实验室 北京 100043
Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure
Shixin XU1,2,3(), Wei YU2, Shujia LI1, Kun WANG1, Qisong SUN1
1 Research Institute of Technology, Shougang Group Co., Ltd., Beijing 100043, China
2 Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Key Laboratory of Green Recyclable Process for Iron and Steel Production, Shougang Group Co., Ltd., Beijing 100043, China
引用本文:

徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. Acta Metall Sin, 2018, 54(8): 1113-1121.

全文: PDF(11555 KB)   HTML
摘要: 

采用热模拟试验机在300~850 ℃施加20%的压缩预变形后进行300 ℃等温相变实验,研究了预变形温度对中碳纳米贝氏体钢等温相变动力学及组织的影响。结果表明,预变形工艺使贝氏体相变孕育期显著缩短;低温预变形工艺使贝氏体相变在整个等温区间内均得到加速,高温预变形工艺使贝氏体相变仅在等温初期得到加速,等温后期相变速率明显减缓;随预变形温度的降低,贝氏体铁素体板条厚度逐渐增加;预变形工艺增加了贝氏体相变组织小角度晶界的频率,低温预变形试样的小角度晶界频率高于高温预变形试样。利用解析相变模型计算了贝氏体等温相变过程中的相变动力学参数n,并对贝氏体相变过程中的形核长大方式进行了判定,发现预变形工艺改变了贝氏体相变的形核位置,低温预变形试样主要以晶隅形核为主,高温预变形试样主要以晶棱、晶面形核为主。

关键词 预变形温度纳米贝氏体相变动力学显微组织解析模型    
Abstract

As a new steel, nanobainite steel has favourable strength and good plasticity, but the bainite transformation needs a longer time, so as to severely slow production efficiency down. So, the research of acceleration methods of bainite transformation is of significance. In this work, in order to accelerate the bainite transformation rate, the 20% compression pre-deformation at 300~850 ℃ and isothermal transformation at 300 ℃ were conducted on a thermal simulator. The effects of pre-deformation temperature on nanobainite transformation kinetics and microstructure of the medium carbon nanobainite steel were investigated. The results showed that pre-deformation process obviously shortened the incubation time of bainite transformation. Low pre-deformation temperature could accelerate bainite transformation at whole isothermal region, while high pre-deformation temperature accelerated bainite transformation at the initial stage, and hindered bainite transformation at later stage. Bainite ferrite lath thickness was increased with decreasing pre-deformation temperature. The pre-deformation process increased the frequency of small angle grain boundary of bainite transformation microstructure, and the frequency of small angle grain boundary of low pre-deformation temperature was higher than that of high pre-deformation temperature. The kinetic parameters n of bainite transformation was calculated by the analytical model, the model of nucleation and growth were identified, the pre-deformation process changed the nucleation position of bainite transformation. The crystal corner nucleation was mainly obtained through low pre-deformation temperature, and the crystal edge and the crystal face nucleation were mainly obtained through high pre-deformation temperature.

Key wordspre-deformation temperature    nanobainite    transformation kinetics    microstructure    analytical model
收稿日期: 2017-11-30     
ZTFLH:  TG142.1  
基金资助:“十二五”国家科技支撑计划项目No.2012BAE03B01
作者简介:

作者简介 徐士新,男,1989年生,硕士

图1  预变形及等温处理工艺示意图
图2  不同工艺下的贝氏体相变动力学曲线
图3  不同工艺下贝氏体铁素体体积分数增长速率曲线
图4  不同工艺试样在贝氏体铁素体体积分数为5%时的SEM像
图5  300 ℃预变形试样等温不同时间的SEM像
图6  不同预变形工艺等温处理后试样的SEM像
图7  300 ℃预变形等温处理后试样的EBSD像
图8  不同预变形工艺试样的TEM像
图9  不同预变形工艺试样晶界取向差角的密度分布图
图10  相变动力学参数(n)随时间(t)和贝氏体铁素体体积分数(fBF)的变化关系
[1] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high-strength bainitic steels: Part 1[J]. Mater. Sci. Technol., 2001, 17: 512
[2] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Design of novel high-strength bainitic steels: Part 2[J]. Mater. Sci. Technol., 2001, 17: 517
[3] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Mater. Sci. Technol., 2002, 18: 279
[4] Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
[5] García-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperature bainite [J]. Mater. Sci. Forum, 2005, 500-501: 285
[6] García-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite[J]. ISIJ Int., 2003, 43: 1238
[7] García-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite[J]. ISIJ Int., 2003, 43: 1821
[8] Umemoto M, Furuhara T, Tamura I.Effects of austenitizing temperature on the kinetics of bainite reaction at constant austenite grain size in Fe-C and Fe-Ni-C alloys[J]. Acta Metall., 1986, 34: 2235
[9] Bhadeshia H K D H. Nanostructured bainite[J]. Proc. R. Soc., 2010, 466A: 3
[10] Yoozbashi M N, Yazdani S, Wang T S.Design of a new nanostructured, high-Si bainitic steel with lower cost production[J]. Mater. Des., 2011, 32: 3248
[11] Bhadeshia H K D H, David S A, Vitek J M, et al. Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel[J]. Mater. Sci. Technol., 1991, 7: 686
[12] Matsuzaki A, Bhadeshia H K D H, Harade H. Stress affected bainitic transformation in a Fe-C-Si-Mn alloy[J]. Acta Metall. Mater., 1994, 42: 1081
[13] Shipway P H, Bhadeshia H K D H. The effect of small stresses on the kinetics of the bainite transformation[J]. Mater. Sci. Eng., 1995, A201: 143
[14] Xu Z Y.Effect of stress on bainitic transformation in steel[J]. Acta. Metall. Sin., 2004, 40: 113(徐祖耀. 应力对钢中贝氏体相变的影响[J]. 金属学报, 2004, 40: 113)
[15] Gong W, Tomota Y, Koo M S, et al.Effect of ausforming on nanobainite steel[J]. Scr. Mater., 2010, 63: 819
[16] Gong W, Tomota Y, Adachi Y, et al.Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel[J]. Acta Mater., 2013, 61: 4142
[17] Ohtsuka H.Effects of strong magnetic fields on bainitic transformation[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 279
[18] Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel[J]. Metall. Trans., 1979, 10A: 895
[19] Xu Q K.A study of the incomplete phenomenon of bainite transformation in a low carbon Fe-C-Mo alloy[J]. J. Chongqing Univ., 1987, (3): 59(徐启昆. 铁碳钼合金贝氏体转变不完全现象的研究[J]. 重庆大学学报, 1987, (3): 59)
[20] Johnson W A, Mehl R F.Reaction kinetics in process of nucleation and growth[J]. Trans. AIME, 1939, 135: 416
[21] Avrami M.Kinetics of phase change. I General theory[J]. J. Chem. Phys., 1939, 7: 1103
[22] Avrami M.Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys., 1940, 8: 212
[23] Avrami M.Granulation, phase change, and microstructure kinetics of phase change. III[J]. J. Chem. Phys., 1941, 9: 177
[24] Sidel S M, Santos F A, Gordo V O, et al.Avrami exponent of crystallization in tellurite glasses[J]. J. Therm. Anal. Calorim., 2011, 106: 613
[25] Quidort D, Bréchet Y J M. The role of carbon on the kinetics of bainite transformation in steels[J]. Scr. Mater., 2002, 47: 151
[26] Liu F, Sommer F, Mittemeijer E J.An analytical model for isothermal and isochronal transformation kinetics[J]. J. Mater. Sci., 2004, 39: 1621
[27] Liu F, Sommer F, Bos C, et al.Analysis of solid state phase transformation kinetics: Models and recipes[J]. Int. Mater. Rev., 2007, 54: 193
[28] Liu F, Sommer F, Mittemeijer E J.Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters[J]. J. Mater. Sci., 2007, 42: 573
[29] Christian J W.The Theory of Transformations in Metals and Alloys[M]. 3rd Ed., Oxford: Elsevier Ltd., 2002: 546
[30] Quidort D, Brechet Y J M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5% C steels[J]. ISIJ Int., 2002, 42: 1010
[31] Zhang Z M, Cai Q W, Yu W, et al.Continuous cooling transformation behavior and kinetic models of transformations for an ultra-low carbon bainitic steel[J]. J. Iron Steel Res. Int., 2012, 19: 73
[32] Wang Q C, Yang Z G, Li Z D.A theoretical analysis on effect of deformation above Ae3 to the nucleation of proeutectoid ferrite transformation[J]. Acta. Metall. Sin., 2007, 43: 344(王启超, 杨志刚, 李昭东. Ae3温度以上变形对先共析铁素体相变形核影响的理论分析[J]. 金属学报, 2007, 43: 344)
[33] Bhadeshia H K D H, Honeycombe R W K. Steels: Microstructure and Properties[M]. 3rd Ed., Oxford: Elsevier Ltd., 2006: 129
[34] Legros M, Dehm G, Arzt E, et al.Observation of giant diffusivity along dislocation cores[J]. Science, 2008, 319: 1646
[35] Bhadeshia H K D H. Bainite in Steels [M]. 2nd Ed., Cambridge: Cambridge University Press, 2001: 124
[36] Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Mater. Sci. Eng., 1998, A245: 72
[37] Hase K, Garcia-Mateo C, Bhadeshia H K D H. Bainite formation influenced by large stress[J]. Mater. Sci. Technol., 2004, 20: 1499
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.