Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 831-843    DOI: 10.11900/0412.1961.2018.00071
  本期目录 | 过刊浏览 |
碳化物/氧化物弥散强化钨基材料研究进展
张涛1(), 严玮2, 谢卓明1, 苗澍1, 杨俊峰1, 王先平1, 方前锋1, 刘长松1
1 中国科学院固体物理研究所 合肥 230031
2 安徽三联学院实验中心 合肥 230031
Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials
Tao ZHANG1(), Wei YAN2, Zhuoming XIE1, Shu MIAO1, Junfeng YANG1, Xianping WANG1, Qianfeng FANG1, Changsong LIU1
1 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2 Experiment Center of Anhui San Lian University, Hefei 230031, China
引用本文:

张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. Acta Metall Sin, 2018, 54(6): 831-843.

全文: PDF(9834 KB)   HTML
摘要: 

钨(W)具有高熔点(3410 ℃)、高密度(19.35 g/cm3)、高硬度、高弹性模量、高热导率以及低膨胀系数、低蒸气压等优异的性能,在国防军工、航空航天和核工业等领域中有着重要的作用。但同时,W及其合金的缺点,如低温脆性(韧脆转变温度通常在400 ℃以上)、室温抗拉强度低,再结晶脆性、高热负荷开裂及辐照脆化等问题,又严重影响了其加工及服役性能。针对上述问题,国内外开展了碳化物/氧化物弥散强化的钨合金研究,通过纳米级碳化物/氧化物弥散强化及微结构优化,提高了W的力学性能及其它服役性能。本文主要从核聚变第一壁用碳化物、氧化物弥散强化钨基材料的设计、制备、组织与性能调控及服役性能评价等方面进行综述,并介绍了作者研发团队的最新进展,展望了未来发展趋势及待解决的问题。

关键词 钨合金碳化物/氧化物弥散强化力学性能抗热负荷性能抗辐照性能    
Abstract

Tungsten (W) plays an important role in the defense industry, aerospace and nuclear industry due to its excellent properties such as high melting point (3410 ℃), high density (19.35 g/cm3), high hardness, high elastic modulus, high thermal conductivity, low expansion coefficient and low vapor pressure. However, its disadvantages, such as low temperature brittleness (ductile brittle transition temperature usually above 400 ℃), low tensile strength, recrystallization embrittlement, high thermal load induced cracking and irradiation embrittlement, affected seriously its processing and servicing performance. Focusing on these problems, carbides/oxide dispersion strengthened W alloys were studied widely. The mechanical properties and other service properties of W were significantly improved by nano scale carbide/oxide dispersion strengthening and microstructure optimization. This article mainly reviews carbide and oxide dispersion strengthening design and the corresponding W-based materials preparation, microstructure and properties of regulation and service performance evaluation, introduces the latest progress of the research and development of the authors' team, and looks forward to the future development trend and the problems to be solved.

Key wordstungsten alloy    carbide/oxide dispersion strengthening    mechanical property    thermal shock resistance    irradiation resistance
收稿日期: 2018-02-28     
ZTFLH:  TG146.1  
基金资助:国家重点研发计划项目No.2017YFA0402800,国家磁约束核聚变专项项目No.2015GB112000,国家自然科学基金项目Nos.11735015、11575241和51771184
作者简介:

作者简介 张 涛,男,1977年生,研究员,博士

Specimen UTS (MPa) / TE (%)
RT 100 ℃ 200 ℃ 400 ℃ Ref.
Forged W-Y2O3 480/0 1040/2.9 948/5.5 667/17.8 [17]
Swaged W-Y2O3 482/0 658/1.6 (150 ℃) 842/6.4 480/16 [18,19]
SPSed W-Y2O3 - - - 436/6.4 [16]
Forged W-Y2O3 - - - 490/8.0 [13]
Rolled W-Y2O3 - - 846/6.4 - [20]
Rolled W-Y2O3 620/0 700/0 820/7.0 520/17 [21]
Rolled W-Zr-Y2O3 790/0 798/0 880/8.0 650/26 [21]
911/3.2 (150 ℃)
表1  不同W-Y2O3在室温~400 ℃间的拉伸性能[13,16~21]
图1  W-Y2O3及W-Zr-Y2O3中的第二相颗粒分布情况[21]
图2  轧制态及1400、1500和1600 ℃退火1 h的W-TiC板在不同温度下的拉伸性能[29]
图3  W基体中Zr—C、Zr—N与Zr—O结合能
Specimen UTS (MPa) / TE (%)
400 ℃ 500 ℃ 600 ℃ 700 ℃
W - - 209*/- 348/11.6±0.4
W-0.2%ZrC - 457*/- 455/27.6±0.4 419/30.0±0.4
W-0.5%ZrC - 572*/- 588/17.6±0.4 535/24.8±0.4
W-1.0%ZrC - 667*/- 798/8.4±0.4 731/10.4±0.4
表2  放电等离子烧结(SPS)技术制备的不同组分的W-ZrC材料的拉伸性能[36]
图4  不同温度下的W-0.5%ZrC旋锻棒材及1 mm厚薄板拉伸应力-应变曲线[40]
图5  W-0.5%ZrC板材在不同温度下的三点弯曲应力-应变曲线及拉伸应力-应变曲线[39]
W material Technology DBTT / K Test method Ref.
W-0.5ZrC (R-R-WZC) (8.5 mm thick plate) Rolling 373 3PB [30]
W-2Y2O3 (S-WY) (2 mm thick, ?95 mm) Hot Forging 473 3PB [34]
Pure W (Rolled W) (10 mm thick plate) Rolling 473 3PB [33]
Pure W (HIPed W) (4 mm thick) HIP 473 3PB [33]
W-0.2TiC (1 mm thick) Forging+Rolling 440 3PB [9]
W-0.25Ti-0.05C (1 mm thick plate) Rolling 260 3PB [9]
W-1%Y2O3 Injection molding 1273 Charpy [11]
Pure W Injection molding 1173 Charpy [11]
W-0.5TiC HIP+Forging 484 3PB [35]
WL10 (W-1%La2O3) Swaging+Rolling 973 Charpy [36]
Pure W (0.1 mm thick foil) Rolling+Joinning 373 Charpy [37]
表3  R-R-WZC的韧脆转变温度(DBTT)与文献报道值对比[9,11,30,33~37]
图6  轧制纯W及不同温度退火后的拉伸应力-应变曲线和轧制W-ZrC及不同温度退火后的拉伸应力-应变曲线[41]
图7  W-0.5%ZrC合金微结构的扫描电镜像、W晶粒尺寸分布、W晶粒内ZrC颗粒尺寸分布及晶界处的ZrC及W-Zr-C-O颗粒尺寸分布[39]
图8  W-0.5%Zr合金中ZrC与W相界面关系分析[39]
图9  轧制及不同温度退火后W-0.5%ZrC、ITER级纯W和纳米级W-TiC的热导率随温度变化[45]
图10  W-ZrC板材受到不同能量的瞬态电子束轰击后表面形貌图[39]
图11  不同钨基材料在220 eV He+、900 ℃和620 eV He+、1000 ℃辐照后的表面和截面图[44]
Exp. condition Tested material Surface morphology Thickness of modified
layer / nm
He+ energy 220 eV PM-W Pin hole structure About 150
Flux: about 1.4×1026 m-2s-1 CVD-W Pin hole structure About 180
Total fluence: 1×1026 atomsm-2 W-1%Y2O3 Pin hole structure About 120
Sample temperature: (900±100) ℃ W-1%Y2O3 Pin hole structure About 80
W-1%La2O3 About 100
W-0.5%ZrC About 75
He+ energy: 620 eV PM-W Coral-like structure About 200
Flux: about 1.4×1026 m-2s-1 CVD-W Coral-like structure About 175
Total fluence: 1×1026 atomsm-2
W-1%Y2O3 Coral-like structure About 220
Sample temperature: (1000±100) ℃
W-1%Y2O3 Coral-like structure About 140
W-1%La2O3 Coral-like structure About 200
W-0.5%ZrC Pin hole structure About 120
表4  不同钨基材料在低能高通量的氦离子辐照结果[44]
图12  W-Ta-C和W-TaC机械合金化后制备的板材不同温度下的拉伸性能[48]
图13  不同材料的极限拉伸强度随着拉伸温度的演化[49]
图14  不同钨基材料在通量为5×1021 ions/(m2s),剂量为7.02×1025 ions/m2,能量为90 eV D+ 200 ℃下辐照后的表面形貌
[1] Wurster S, Baluc N, Battabyal M.Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials[J]. J. Nucl. Mater., 2013, 442: S181
[2] Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[3] Wesemann I, Spielmann W, Heel P, et al.Fracture strength and microstructure of ODS tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 687
[4] Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006
[5] Li X Y, Liu W, Xu Y C, et al.Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries[J]. Acta Mater., 2016, 109: 115
[6] Li X Y, Liu W, Xu Y C, et al.Energetic and kinetic behaviors of small vacancy clusters near a symmetric Σ5 (310)/[001] tilt grain boundary in bcc Fe[J]. J. Nucl. Mater., 2013, 440: 250
[7] Kim Y, Lee K H, Kim E P, et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 842
[8] Kim Y, Hong M H, Lee S H, et al.The effect of yttrium oxide on the sintering behavior and hardness of tungsten[J]. Met. Mater. Int., 2006, 12: 245
[9] Aguirre M V, Martín A, Pastor J Y, et al.Mechanical properties of Y2O3-doped W-Ti alloys[J]. J. Nucl. Mater., 2010, 404: 203
[10] Vieider G, Merola M, Bonal J P, et al.European development of the ITER divertor target[J]. Fusion Eng. Des., 1999, 46: 221
[11] Yar M A, Wahlberg S, Bergqvist H, et al.Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization[J]. J. Nucl. Mater., 2011, 412: 227
[12] Battabyal M, Sch?ublin R, Sp?tig P, et al.W-2wt.%Y2O3 composite: Microstructure and mechanical properties[J]. Mater. Sci. Eng., 2012, A538: 53
[13] Battabyal M, Sch?ublin R, Sp?tig P, et al.Microstructure and mechanical properties of a W-2wt.%Y2O3 composite produced by sintering and hot forging[J]. J. Nucl. Mater., 2013, 442: S225
[14] Battabyal M, Sp?tig P, Baluc N.Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot forging[J]. Fusion Eng. Des., 2013, 88: 1668
[15] Dong Z, Liu N, Ma Z Q, et al.Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy[J]. Int. J. Refr. Met. Hard Mater., 2017, 69: 266
[16] Tan X Y, Luo L M, Chen H Y, et al.Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Sci. Rep., 2015, 512: 755
[17] Lian Y Y, Liu X, Feng F, et al, Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging[J]. Phys. Scr., 2017, (T170): 014044
[18] Xie Z M, Liu R, Miao S, et al.Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3[J]. J. Nucl. Mater., 2015, 464: 193
[19] Liu R, Xie Z M, Fang Q F, et al.Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method[J]. J. Alloys Compd., 2016, 657: 73
[20] Zhao M Y, Zhou Z J, Zhong M, et al.Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies[J]. J. Nucl. Mater., 2016, 470: 236
[21] Xie Z M, Liu R, Zhang T, et al.Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure[J]. Mater. Des., 2016, 107: 144
[22] Kurishita H, Kobayashi S, Nakai K.Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations[J]. J. Nucl. Mater., 2008, 377: 34
[23] Kurishita H, Arakawa H, Matsuo S, et al.Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement[J]. Mater. Trans., 2013, 54: 456
[24] Kurishita H, Matsuo S, Arakawa H, et al.Current status of nanostructured tungsten-based materials development[J]. Phys. Scr., 2014, 159: 014032
[25] Ishijima Y, Kannari S, Kurishita H, et al.Processing of fine-grained W materials without detrimental phases and their mechanical properties at 200-432 K[J]. Mater. Sci. Eng., 2008, A473: 7
[26] Zhong F L, Yu F W, Chen J L.W-TiC alloy plasma facing materials and heat flux performance test under electron beam facility[J]. Rare Met. Mater. Eng., 2010, 39: 3(种法力, 于福文, 陈俊凌. W-TiC合金面对等离子体材料及其电子束热负荷实验研究[J]. 稀有金属材料与工程, 2010, 39: 3)
[27] Yan Q Z, Zhang X F, Wang T N, et al.Effect of hot working process on the mechanical properties of tungsten materials[J]. J. Nucl. Mater., 2013, 442(suppl.1): S233
[28] Lang S T, Yan Q Z, Sun N B, et al.Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method[J]. Fusion Eng. Des., 2017, 121: 366
[29] Miao S, Xie Z M, Zhang T, et al.Mechanical properties and thermal stability of rolled W-0.5wt% TiC alloys[J]. Mater. Sci. Eng., 2016, A671: 87
[30] Ueda Y, Oya M, Hamaji Y, et al.Surface erosion and modification of toughened, fine-grained, recrystallized tungsten exposed to TEXTOR edge plasma[J]. Phys. Scr., 2014, 159: 014038.
[31] Oya M, Lee H T, Ohtsuka Y, et al.Deuterium retention in various toughened, fine-grained recrystallized tungsten materials under different irradiation conditions[J]. Phys. Scr., 2014, 159: 014048
[32] Roosta M, Baharvandi H.The change occurred in W/ZrC composite properties by using nano reactants[J]. Int. J. Refract. Met. Hard Mater., 2013, 37: 29
[33] Zhang T Q, Wang Y J, Zhou Y, et al.Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites[J]. Mater. Sci. Eng., 2010, A527: 4021
[34] Li P F, Fan J L, Zhang M, et al.Effect of sintering temperature on properties and microstructure of tungsten composites reinforced by ZrC-Y2O3 particles[J]. Chin. J. Nonferrous Met., 2016, 26: 1952(李鹏飞, 范景莲, 章曼等. 烧结温度对ZrC-Y2O3复合增强细晶钨组织与性能的影响[J]. 中国有色金属学报, 2016, 26: 1952)
[35] Fan J L, Han Y, Li P F, et al.Micro/nano composited tungsten material and its high thermal loading behavior[J]. J. Nucl. Mater., 2014, 455: 717
[36] Xie Z M, Liu R, Fang Q F, et al.Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method[J]. Plasma Sci. Technol., 2015, 17: 1066
[37] Xie Z M, Zhang T, Liu R, et al.Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180
[38] Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[39] Xie Z M, Liu R, Miao S, et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Sci. Rep., 2015, 5: 16014
[40] Ding H L, Xie Z M, Fang Q F, et al.Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique[J]. Mater. Sci. Eng., 2018, A716: 268
[41] Deng H W, Xie Z M, Wang Y K, et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology[J]. Mater. Sci. Eng., 2018, A715: 117
[42] Pintsuk G, Kurishita H, Linke J, et al.Thermal shock response of fine-and ultra-fine-grained tungsten-based materials[J]. Phys. Scr., 2011, T145: 014060
[43] Zhang X, Yan Q.The thermal crack characteristics of rolled tungsten in different orientations[J]. J. Nucl. Mater., 2014, 444: 428
[44] Liu X, Lian Y Y, Greuner H, et al.Irradiation effects of hydrogen and helium plasma on different grade tungsten materials[J]. Nucl. Mater. Energy, 2017, 12: 1134
[45] Xie Z M, Miao S, Liu R, et al.Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 496: 41
[46] Miao S, Xie Z M, Zeng L F, et al.The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W-0.5 wt.%Ta-0.01 wt.%C alloy[J]. Fusion Eng. Des., 2017, 125: 490
[47] Miao S, Xie Z M, Zeng L F, et al.Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process[J]. Nucl. Mater. Energy, 2017, 13: 12
[48] Xie Z M, Miao S, Zhang T, et al.Recrystallization behavior and thermal shock resistance of the W-1.0wt% TaC alloy[J]. J. Nucl. Mater., 2018, 501: 282
[49] Wang Y K, Miao S, Xie Z M, et al.Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 492: 260
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.