|
|
碳化物/氧化物弥散强化钨基材料研究进展 |
张涛1( ), 严玮2, 谢卓明1, 苗澍1, 杨俊峰1, 王先平1, 方前锋1, 刘长松1 |
1 中国科学院固体物理研究所 合肥 230031 2 安徽三联学院实验中心 合肥 230031 |
|
Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials |
Tao ZHANG1( ), Wei YAN2, Zhuoming XIE1, Shu MIAO1, Junfeng YANG1, Xianping WANG1, Qianfeng FANG1, Changsong LIU1 |
1 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China 2 Experiment Center of Anhui San Lian University, Hefei 230031, China |
引用本文:
张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
Tao ZHANG,
Wei YAN,
Zhuoming XIE,
Shu MIAO,
Junfeng YANG,
Xianping WANG,
Qianfeng FANG,
Changsong LIU.
Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. Acta Metall Sin, 2018, 54(6): 831-843.
[1] | Wurster S, Baluc N, Battabyal M.Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials[J]. J. Nucl. Mater., 2013, 442: S181 | [2] | Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209 | [3] | Wesemann I, Spielmann W, Heel P, et al.Fracture strength and microstructure of ODS tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 687 | [4] | Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006 | [5] | Li X Y, Liu W, Xu Y C, et al.Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries[J]. Acta Mater., 2016, 109: 115 | [6] | Li X Y, Liu W, Xu Y C, et al.Energetic and kinetic behaviors of small vacancy clusters near a symmetric Σ5 (310)/[001] tilt grain boundary in bcc Fe[J]. J. Nucl. Mater., 2013, 440: 250 | [7] | Kim Y, Lee K H, Kim E P, et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 842 | [8] | Kim Y, Hong M H, Lee S H, et al.The effect of yttrium oxide on the sintering behavior and hardness of tungsten[J]. Met. Mater. Int., 2006, 12: 245 | [9] | Aguirre M V, Martín A, Pastor J Y, et al.Mechanical properties of Y2O3-doped W-Ti alloys[J]. J. Nucl. Mater., 2010, 404: 203 | [10] | Vieider G, Merola M, Bonal J P, et al.European development of the ITER divertor target[J]. Fusion Eng. Des., 1999, 46: 221 | [11] | Yar M A, Wahlberg S, Bergqvist H, et al.Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization[J]. J. Nucl. Mater., 2011, 412: 227 | [12] | Battabyal M, Sch?ublin R, Sp?tig P, et al.W-2wt.%Y2O3 composite: Microstructure and mechanical properties[J]. Mater. Sci. Eng., 2012, A538: 53 | [13] | Battabyal M, Sch?ublin R, Sp?tig P, et al.Microstructure and mechanical properties of a W-2wt.%Y2O3 composite produced by sintering and hot forging[J]. J. Nucl. Mater., 2013, 442: S225 | [14] | Battabyal M, Sp?tig P, Baluc N.Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot forging[J]. Fusion Eng. Des., 2013, 88: 1668 | [15] | Dong Z, Liu N, Ma Z Q, et al.Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy[J]. Int. J. Refr. Met. Hard Mater., 2017, 69: 266 | [16] | Tan X Y, Luo L M, Chen H Y, et al.Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Sci. Rep., 2015, 512: 755 | [17] | Lian Y Y, Liu X, Feng F, et al, Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging[J]. Phys. Scr., 2017, (T170): 014044 | [18] | Xie Z M, Liu R, Miao S, et al.Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W-Y2O3[J]. J. Nucl. Mater., 2015, 464: 193 | [19] | Liu R, Xie Z M, Fang Q F, et al.Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method[J]. J. Alloys Compd., 2016, 657: 73 | [20] | Zhao M Y, Zhou Z J, Zhong M, et al.Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies[J]. J. Nucl. Mater., 2016, 470: 236 | [21] | Xie Z M, Liu R, Zhang T, et al.Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure[J]. Mater. Des., 2016, 107: 144 | [22] | Kurishita H, Kobayashi S, Nakai K.Development of ultra-fine grained W-(0.25-0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations[J]. J. Nucl. Mater., 2008, 377: 34 | [23] | Kurishita H, Arakawa H, Matsuo S, et al.Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement[J]. Mater. Trans., 2013, 54: 456 | [24] | Kurishita H, Matsuo S, Arakawa H, et al.Current status of nanostructured tungsten-based materials development[J]. Phys. Scr., 2014, 159: 014032 | [25] | Ishijima Y, Kannari S, Kurishita H, et al.Processing of fine-grained W materials without detrimental phases and their mechanical properties at 200-432 K[J]. Mater. Sci. Eng., 2008, A473: 7 | [26] | Zhong F L, Yu F W, Chen J L.W-TiC alloy plasma facing materials and heat flux performance test under electron beam facility[J]. Rare Met. Mater. Eng., 2010, 39: 3(种法力, 于福文, 陈俊凌. W-TiC合金面对等离子体材料及其电子束热负荷实验研究[J]. 稀有金属材料与工程, 2010, 39: 3) | [27] | Yan Q Z, Zhang X F, Wang T N, et al.Effect of hot working process on the mechanical properties of tungsten materials[J]. J. Nucl. Mater., 2013, 442(suppl.1): S233 | [28] | Lang S T, Yan Q Z, Sun N B, et al.Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method[J]. Fusion Eng. Des., 2017, 121: 366 | [29] | Miao S, Xie Z M, Zhang T, et al.Mechanical properties and thermal stability of rolled W-0.5wt% TiC alloys[J]. Mater. Sci. Eng., 2016, A671: 87 | [30] | Ueda Y, Oya M, Hamaji Y, et al.Surface erosion and modification of toughened, fine-grained, recrystallized tungsten exposed to TEXTOR edge plasma[J]. Phys. Scr., 2014, 159: 014038. | [31] | Oya M, Lee H T, Ohtsuka Y, et al.Deuterium retention in various toughened, fine-grained recrystallized tungsten materials under different irradiation conditions[J]. Phys. Scr., 2014, 159: 014048 | [32] | Roosta M, Baharvandi H.The change occurred in W/ZrC composite properties by using nano reactants[J]. Int. J. Refract. Met. Hard Mater., 2013, 37: 29 | [33] | Zhang T Q, Wang Y J, Zhou Y, et al.Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites[J]. Mater. Sci. Eng., 2010, A527: 4021 | [34] | Li P F, Fan J L, Zhang M, et al.Effect of sintering temperature on properties and microstructure of tungsten composites reinforced by ZrC-Y2O3 particles[J]. Chin. J. Nonferrous Met., 2016, 26: 1952(李鹏飞, 范景莲, 章曼等. 烧结温度对ZrC-Y2O3复合增强细晶钨组织与性能的影响[J]. 中国有色金属学报, 2016, 26: 1952) | [35] | Fan J L, Han Y, Li P F, et al.Micro/nano composited tungsten material and its high thermal loading behavior[J]. J. Nucl. Mater., 2014, 455: 717 | [36] | Xie Z M, Liu R, Fang Q F, et al.Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method[J]. Plasma Sci. Technol., 2015, 17: 1066 | [37] | Xie Z M, Zhang T, Liu R, et al.Grain growth behavior and mechanical properties of zirconium micro-alloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys[J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 180 | [38] | Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209 | [39] | Xie Z M, Liu R, Miao S, et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Sci. Rep., 2015, 5: 16014 | [40] | Ding H L, Xie Z M, Fang Q F, et al.Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique[J]. Mater. Sci. Eng., 2018, A716: 268 | [41] | Deng H W, Xie Z M, Wang Y K, et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology[J]. Mater. Sci. Eng., 2018, A715: 117 | [42] | Pintsuk G, Kurishita H, Linke J, et al.Thermal shock response of fine-and ultra-fine-grained tungsten-based materials[J]. Phys. Scr., 2011, T145: 014060 | [43] | Zhang X, Yan Q.The thermal crack characteristics of rolled tungsten in different orientations[J]. J. Nucl. Mater., 2014, 444: 428 | [44] | Liu X, Lian Y Y, Greuner H, et al.Irradiation effects of hydrogen and helium plasma on different grade tungsten materials[J]. Nucl. Mater. Energy, 2017, 12: 1134 | [45] | Xie Z M, Miao S, Liu R, et al.Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 496: 41 | [46] | Miao S, Xie Z M, Zeng L F, et al.The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W-0.5 wt.%Ta-0.01 wt.%C alloy[J]. Fusion Eng. Des., 2017, 125: 490 | [47] | Miao S, Xie Z M, Zeng L F, et al.Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process[J]. Nucl. Mater. Energy, 2017, 13: 12 | [48] | Xie Z M, Miao S, Zhang T, et al.Recrystallization behavior and thermal shock resistance of the W-1.0wt% TaC alloy[J]. J. Nucl. Mater., 2018, 501: 282 | [49] | Wang Y K, Miao S, Xie Z M, et al.Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 492: 260 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|