|
|
基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究 |
魏铖1,2, 柯常波2, 马海涛1,3, 张新平2( ) |
1 华南理工大学土木与交通学院 广州 510640 2 华南理工大学材料科学与工程学院 广州 510640 3 广州大学工程抗震研究中心 广州 510405 |
|
A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System |
Cheng WEI1,2, Changbo KE2, Haitao MA1,3, Xinping ZHANG2( ) |
1 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China 2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China 3 Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510405, China; |
引用本文:
魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
Cheng WEI,
Changbo KE,
Haitao MA,
Xinping ZHANG.
A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. Acta Metall Sin, 2018, 54(8): 1204-1214.
[1] | Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40 | [2] | Waitz T, Kazykhanov V, Karnthaler H P.Martensitic phase transformations in nanocrystalline NiTi studied by TEM[J]. Acta Mater., 2004, 52: 137 | [3] | Zhang Z Q, Dong L M, Yang Y, et al.Influences of quenching temperature on the microstructure and deformation behaviors of TC16 titanium alloy[J]. Acta Metall. Sin., 2011, 47: 1257(张志强, 董利民, 杨洋等. 淬火温度对TC16钛合金显微组织及变形行为的影响[J]. 金属学报, 2011, 47: 1257) | [4] | Kinney C C, Pytlewski K R, Khachaturyan A G, et al.The microstructure of lath martensite in quenched 9Ni steel[J]. Acta Mater., 2014, 69: 372 | [5] | Zhang S H, Wang P, Li D Z, et al.Investigation of trip effect in ZG06Cr13Ni4Mo martensitic stainless steel by in situ synchrotron high energy X-ray diffraction[J]. Acta Metall. Sin., 2015, 51: 1306(张盛华, 王培, 李殿中等. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究[J]. 金属学报, 2015, 51: 1306) | [6] | Chen L Q.Phase-field models for microstructure evolution[J]. Annu. Rev. Mater. Res., 2002, 32: 113 | [7] | Wang Y, Khachaturyan A G.Three-dimensional field model and computer modeling of martensitic transformations[J]. Acta Mater., 1997, 45: 759 | [8] | Khachaturyan A G.Theory of Structural Transformations in Solids[M]. New York: Wiley, 1983: 198 | [9] | Levitas V I, Preston D L.Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite?martensite[J]. Phys. Rev., 2002, 66B: 134206 | [10] | Levitas V I, Preston D L.Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis[J]. Phys. Rev., 2002, 66B: 134207 | [11] | Yamanaka A, Takaki T, Tomita Y.Elastoplastic phase-field simulation of self-and plastic accommodations in cubic→tetragonal martensitic transformation[J]. Mater. Sci. Eng., 2008, A491: 378 | [12] | Yamanaka A, Takaki T, Tomita Y.Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal[J]. Int. J. Mech. Sci., 2010, 52: 245 | [13] | Idesman A V, Cho J Y, Levitas V I.Finite element modeling of dynamics of martensitic phase transitions[J]. Appl. Phys. Lett., 2008, 93: 043102. | [14] | Man J, Zhang J H, Rong Y H.Three-dimensional phase field study on strain self-accommodation in martenstic transformation[J]. Acta Metall. Sin., 2010, 46: 775(满蛟, 张骥华, 戎咏华. 马氏体相变中应变自协调效应的三维相场研究[J]. 金属学报, 2010, 46: 775) | [15] | Ke C B, Ma X, Zhang X P.Phase field simulation of effects of pores on B2-R phase transformation in NiTi shape memory alloy[J]. Acta Metall. Sin., 2011, 47: 129(柯常波, 马骁, 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47: 129) | [16] | She H, Liu Y, Wang B.Phase field simulation of heterogeneous cubic→tetragonal martensite nucleation[J]. Int. J. Solids Struct., 2013, 50: 1187 | [17] | Shen C, Chen Q, Wen Y H, et al.Increasing length scale of quantitative phase field modeling of growth-dominant or coarsening-dominant process[J]. Scr. Mater., 2004, 50: 1023 | [18] | Artemev A, Jin Y, Khachaturyan A G.Three-dimensional phase field model of proper martensitic transformation[J]. Acta Mater., 2001, 49: 1165 | [19] | Zhong Y, Zhu T.Phase-field modeling of martensitic microstructure in NiTi shape memory alloys[J]. Acta Mater., 2014, 75: 337 | [20] | Cahn J W, Hilliard J E.Free energy of a nonuniform system. I. Interfacial free energy[J]. J. Chem. Phys., 1958, 28: 258 | [21] | Gunton J D, Miguel M, Sahni P S.Phase Transitions and Critical Phenomena[M]. New York: Academic, 1983: 267 | [22] | Moelans N, Blanpain B, Wollants P.An introduction to phase-field modeling of microstructure evolution[J]. Calphad, 2008, 32: 268 | [23] | Bhattacharya K, Kohn R V.Symmetry, texture and the recoverable strain of shape-memory polycrystals[J]. Acta Mater., 1996, 44: 529 | [24] | Wagner M F X, Windl W. Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles[J]. Acta Mater., 2008, 56: 6232 | [25] | Jin Y M, Artemev A, Khachaturyan A G.Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of ζ′ martensite in AuCd alloys[J]. Acta Mater., 2001, 49: 2309 | [26] | Bhattacharya K.Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect [M]. Oxford: Oxford University Press, 2003: 46 | [27] | Fukuda T, Saburi T, Doi K, et al. Nucleation and self-accommodation of the R-phase in Ti-Ni alloys [J]. Mater. Trans., 1992, 33: 271 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|