Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 45-58    DOI: 10.11900/0412.1961.2018.00457
  本期目录 | 过刊浏览 |
基于应变匹配的高性能金属纳米复合材料研究进展
崔立山(), 姜大强
中国石油大学(北京)理学院 北京 102200
Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching
Lishan CUI(), Daqiang JIANG
College of Science, China University of Petroleum-Beijing, Beijing 102200, China
引用本文:

崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. Acta Metall Sin, 2019, 55(1): 45-58.

全文: PDF(6414 KB)   HTML
摘要: 

纳米线具有超高强度及超大弹性应变,以其增强的复合材料被预期具有超常力学性能,然而,已有研究结果一直“令人失望”。其原因是纳米线的超常力学性能未能在复合材料中体现。基于对位错滑移型金属基体中的位错与纳米线界面交互作用是“失望”之源的猜想,提出采用点阵切变型金属的切应变与纳米线的弹性应变相匹配的设计概念,选择纳米线Nb/NiTi 记忆合金等体系,证实了纳米线(带、粒子)的超常力学性能得以在复合材料中体现,使复合材料具备超常力学性能成为现实。此外,还发现上述突破可引发复合材料呈现超常力学性能的新机制(大应力耦合效应等)。据此设计的Nb纳米线/NiTi 记忆合金复合材料兼具:弹性应变极限大于6%,弹性模量低于28 GPa,屈服强度高达1.65 GPa。

关键词 应变匹配马氏体相变形状记忆合金纳米复合材料    
Abstract

Freestanding nanowires have ultrahigh elastic strain limits (4%~7%) and yield strengths, it is expected that composites reinforced by nanowires will have exceptional mechanical properties. However, the results obtained so far have been disappointing, primarily because the intrinsic mechanical properties of nanowires have not been successfully exploited in bulk composites. This is thought to be due to the inelastic strain incompatibilities at typical dislocation-piled-up interfaces. Therefore, we proposed a concept of elastic and transformation strain matching to realize the intrinsic mechanical properties of the nanowires. By creating a nanostructured composite consisting of nano Nb embedded in a NiTi matrix, the intrinsic mechanical properties of Nb nanowires, nano ribbons and nano particles are realized. Besides, this breakthrough triggers a new mechanism of stress coupling that induces the nanocomposite showing excellent mechanical properties. Based on the design strategy, we developed an in situ composite that possesses a large quasi-linear elastic strain of over 6%, a low Young's modulus of less than 28 GPa, and a high yield strength of 1.65 GPa.

Key wordsstrain matching    martensitic transformation    shape memory alloy    nanocomposite
收稿日期: 2018-09-28     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目No.51231008
作者简介:

作者简介 崔立山,男,1963 年生,教授

图1  位错滑移型金属基体及其与纳米线匹配的二维点阵示意图,当位错(两根位错)滑移至界面时位错滑移基体输出应变的分布示意图
图2  点阵切变基体与纳米线匹配的二维点阵及应变分布示意图,基体发生应力诱发马氏体变形(马氏体和母相共存)过程中点阵切变基体输出应变的分布示意图
图3  Nb纳米线/NiTi基体复合材料丝材及其微观组织[12]
图4  Nb纳米线/NiTi记忆合金样品在原位拉伸过程中的高能同步辐射XRD谱以及Nb纳米线的晶格应变曲线[12]
图5  Nb纳米线在位错滑移型金属基体中在应力诱发马氏体相变NiTi基体中的弹性应变极限,与文献报道的多种自由态纳米线的弹性应变极限的比较[12]
图6  Nb纳米线/NiTi记忆合金复合材料(NICSMA)的拉伸应力-应变曲线、NICSMA性能占据三大类工程材料性能挑战区、NICSMA与其它金属材料屈服强度和弹性应变极限的比较、与其它材料屈服强度和弹性模量的比较[12]
图7  Nb纳米线/NiTi记忆合金样品的拉伸循环应力-应变曲线、样品在第一次加载过程中的同步辐射高能XRD谱、纳米线在第一次加卸载过程中的晶格应变曲线、纳米线在第二次加卸载过程中的晶格应变曲线[13]
图8  Nb纳米线体积分数分别为10%和20%的NiTi记忆合金复合材料丝材的电子显微分析[14]
图9  在原位TEM拉伸过程中Nb纳米线的弹性变形行为[15]
图10  包含M1和M3马氏体板条区域的高分辨像及Nb纳米线中晶格应变的变化规律[15]
图11  Nb纳米带/NiTi基体复合材料丝的横截面和纵截面的STEM照片、垂直于加载方向的Nb (220)晶面的晶格应变与施加应变的关系曲线(插图为样品在室温下的拉伸应力-应变曲线)[12]
图12  Nb(110)晶面晶格应变与施加应变的关系曲线(插图是Nb纳米线/NiTi记忆合金复合材料拉伸应力-应变曲线)、在加载过程中B19′-NiTi(001)晶面的衍射强度与二维X射线衍射谱方位角的关系曲线、在8.7%循环前后马氏体态NiTi基体中孪晶形貌的比较、纳米线的弹性应变极限与以往文献报道的比较[16]
图13  Nb纳米线/NiTi记忆合金复合材料在加卸载过程中Nb纳米线的晶格应变随外加应变变化曲线、复合材料在加载过程中的应力-应变曲线以及与商业化NiTi记忆合金的对比[17]
图14  Nb纳米线/NiTi记忆合金复合材料及其与单体NiTi超弹性曲线的对比[18]
图15  Ti3Sn/TiNi复合材料微观组织结构[19]
图16  Ti3Sn/TiNi复合材料变形行为[19]
图17  Ti3Sn/TiNi复合材料的的室温压缩应力应变曲线、复合材料的力学性能和其它的高性能金属基复合材料对比[19]
图18  复合材料丝双程驱动特性[20]
图19  Nb纳米线/NiTi复合材料在拉伸循环过程中的一维高能XRD谱、NiTi基体中Nb纳米线被保留弹性应变与拉伸应变的曲线、NiTi基体中Nb纳米线被保留拉伸和压缩弹性应变与文献报道的基材表面薄膜被保留拉伸和压缩弹性应变的比较[16]
图20  不同应变状态的10 nm Pt和5 nm Pt纳米膜的氧还原反应(ORR)线性伏安扫描(LSV)曲线对比[28]
[1] Wong E W, Sheehan P E, Lieber C M.Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277: 1971
[2] Zhu T, Li J.Ultra-strength materials[J]. Prog. Mater. Sci., 2010, 55: 710
[3] Yue Y H, Liu P, Zhang Z, et al.Approaching the theoretical elastic strain limit in copper nanowires[J]. Nano Lett., 2011, 11: 3151
[4] Koziol K, Vilatela J, Moisala A, et al.High-performance carbon nanotube fiber[J]. Science, 2007, 318: 1892
[5] Dzenis Y.Materials science: Structural nanocomposites[J]. Science, 2008, 319: 419
[6] Podsiadlo P, Kaushik A K, Arruda E M, et al.Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 2007, 318: 80
[7] Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Adv. Mater., 2006, 18: 689
[8] Thilly L, van Petegem S, Renault P O, et al. A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on Cu-Nb nanocomposite wires[J]. Acta Mater., 2009, 57: 3157
[9] Vidal V, Thilly L, van Petegem S, et al. Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons[J]. Scr. Mater., 2009, 60: 171
[10] Ayd?ner C C, Brown D W, Mara N A, et al.In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load[J]. Appl. Phys. Lett., 2009, 94: 031906
[11] Thilly L, Renault P O, Vidal V, et al.Plasticity of multiscale nanofilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect[J]. Appl. Phys. Lett., 2006, 88: 191906
[12] Hao S J, Cui L S, Jiang D Q, et al.A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science, 2013, 339: 1191
[13] Wang S, Cui L, Hao S, et al.Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix[J]. Sci. Rep., 2014, 4: 6753
[14] Liu Z Y.Study of structure and functional property of Nb/NiTi composite [D]. Beijing: China University of Petroleum, 2014(刘镇洋. Nb纳米线/NiTi记忆合金复合材料结构与功能特性研究 [D]. 北京: 中国石油大学(北京), 2014)
[15] Zang K T, Mao S C, Cai J X, et al.Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix[J]. Sci. Rep., 2015, 5: 17530
[16] Hao S J, Cui L S, Wang H, et al.Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires[J]. ACS Appl. Mater. Interfaces, 2016, 8: 2917
[17] Hao S J, Cui L S, Guo F M, et al.Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect[J]. Sci. Rep., 2015, 5: 8892
[18] Hao S J, Cui L S, Jiang D Q, et al.Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis[J]. Appl. Phys. Lett., 2013, 102: 231905
[19] Zhang J S, Cui L S, Jiang D Q, et al.A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess[J]. Sci. Rep., 2015, 5: 8357
[20] Hao S J, Liu Y N, Ren Y, et al.Achieving superior two-way actuation by the stress-coupling of nanoribbons and nanocrystalline shape memory alloy[J]. ACS Appl. Mater. Interfaces, 2016, 8: 16310
[21] Hao S J, Cui L S, Wang Y D, et al.The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi-NiTi nanocomposite[J]. Appl. Phys. Lett., 2011, 99: 024102
[22] Zhang J S, Liu Y N, Ren Y, et al.In situ synchrotron X-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite[J]. Appl. Phys. Lett., 2014, 105: 041910
[23] Jiang D Q, Hao S J, Zhang J S, et al. In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3-TiNi composite [J]. Scr. Mater., 2014, 78-79: 53
[24] Zhang J S, Liu Y N, Huan Y, et al.High damping NiTi-Ti3Sn in situ composite with transformation-mediated plasticity[J]. Mater. Des., 2014, 63: 460
[25] Shao Y, Guo F M, Huan Y, et al.Fabrication, microstructure and mechanical properties of W-NiTi composites[J]. J Alloys Compd., 2017, 695: 1976
[26] Shao Y, Guo F M, Ren Y, et al.Tensile properties of a novel W-NiTi heavy alloy with transforming matrix[J]. Mater. Sci. Eng., 2017, A683: 103
[27] Shao Y, Yu K Y, Jiang D Q, et al.High strength W/TiNi micro-laminated composite with transformation-mediated ductility[J]. Mater. Des., 2016, 106: 415
[28] Du M S, Cui L S, Cao Y, et al.Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate[J]. J. Am. Chem. Soc., 2015, 137: 7397
[29] Feng C, Zhao J C, Yang F, et al.Nonvolatile modulation of electronic structure and correlative magnetism of L10-FePt films using significant strain induced by shape memory substrates[J]. Sci. Rep., 2016, 6: 20199
[30] Feng C, Zhao J C, Yang F, et al.Reversible and nonvolatile modulations of magnetization switching characteristic and domain configuration in L10-FePt films via nonelectrically controlled strain engineering[J]. ACS Appl. Mater. Interfaces, 2016, 8: 7545
[31] Du M S, Wan Q, Wang Z Q, et al.Elastic strain induced improvement in the photocatalytic activity of semiconducting film exerted by the surface relief of Fe-Ni-Co-Ti alloy substrate[J]. Mater. Lett., 2016, 168: 192
[32] Du M S, Cui L S, Wan Q.Tensile strain induced narrowed bandgap of TiO2 films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending[J]. Mater. Sci. Eng., 2016, B207: 7
[33] Du M S, Wan Q, Wang Z Q, et al.Elastic strain effects on the photocatalytic TiO2 nanofilm: Utilizing the martensitic surface relief of FeNiCoTi alloy substrate[J]. Chem. Phys. Lett., 2016, 658: 130
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[8] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[12] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[13] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[14] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[15] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.