Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 657-668    DOI: 10.11900/0412.1961.2017.00543
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
定向凝固晶粒竞争生长的研究进展
王锦程(), 郭春文, 李俊杰, 王志军
西北工业大学凝固技术国家重点实验室 西安 710072
Recent Progresses in Competitive Grain Growth During Directional Solidification
Jincheng WANG(), Chunwen GUO, Junjie LI, Zhijun WANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(7349 KB)   HTML
摘要: 

竞争生长是材料微观组织演化过程中普遍存在的现象,不同组织间(包括相、枝晶、晶粒等)均可能存在竞争生长,这些竞争作用对最终微观组织的形成及力学性能具有重要影响。不同取向晶粒间的竞争生长控制是材料微观组织调控的重要环节,尤其是对定向单晶叶片的制备,不同取向晶粒间的竞争生长是决定能否成功获得完整单晶结构的关键因素。近年来,一方面单晶材料制备要求的不断提高,迫切需要有关晶粒竞争生长机制及规律方面的理论性指导,另一方面经典晶粒竞争生长理论预测结果与实验观测并不相符,有时甚至可能完全相反,这使得定向凝固过程中不同取向晶粒间的竞争生长问题日益成为一个热门的研究课题。本文首先回顾了Walton-Chalmers模型的晶粒竞争生长机制及其所受到的严重挑战,然后分别对定向凝固二维条件下汇聚生长和发散生长及三维条件下晶粒竞争生长的研究现状进行了述评,并介绍了本课题组近年来基于相场法数值模拟在定向凝固晶粒竞争生长研究方面的工作进展,最后对定向凝固过程中不同取向晶粒之间的竞争生长研究进行了总结与展望。

关键词 定向凝固晶粒竞争生长相场法研究进展    
Abstract

Competitive growth between different structures including phases, dendrites and grains is a common phenomenon existing in various microstructure evolution processes. The overgrowth outcome of competitive growth has a paramount influence on final solidification microstructures and mechanical behaviors of materials. The competitive grain growth during directional solidification is a key factor for microstructures controlling, especially for the preparation of single crystal turbine blades. In recent years, the competitive grain growth during directional solidification becomes a hot spot due to an increasing demand for the single crystal preparation and inconsistent experimental results with the classical Walton-Chalmers model. In this paper, the mechanism of competitive grain growth based on the classical Walton-Chalmers model and its challenges were firstly discussed, and then some recent research progresses in converging growth and diverging growth in two dimensional spaces, and non-uniplanar growth in three dimensional spaces were reviewed. Furthermore, the recent works of our group on competitive grain growth during directional solidification by using the phase field method were introduced. Finally, the outlooks of future studies on competitive grain growth during directional solidification are presented.

Key wordsdirectional solidification    competitive grain growth    phase field method    research progress
收稿日期: 2017-12-20     
ZTFLH:  TG244  
基金资助:资助项目 国家自然科学基金项目Nos.51371151和51571165
作者简介:

作者简介 王锦程,男,1972年生,教授,博士

引用本文:

王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification. Acta Metall Sin, 2018, 54(5): 657-668.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00543      或      https://www.ams.org.cn/CN/Y2018/V54/I5/657

图1  Walton-Charmers 示意图模型[22]
图2  高温合金定向凝固过程中汇聚双晶生长发生的反常淘汰[32]
图3  定向凝固汇聚双晶生长中的反常淘汰现象[22,39]
图4  不同时刻的枝晶组织形貌[54]
图5  发散晶界处择优枝晶的侧向分枝行为[54]
图6  不同构型下的晶粒竞争生长示意图[54]
图7  三维空间中双晶构型关系示意图[40]
图8  大尺度汇聚双晶竞争生长模拟[50]
图9  汇聚双晶生长过程的横截面微观组织[41]
图10  镍基高温合金异面竞争生长实验结果[35,40]
图11  异面竞争生长过程中择优取向晶粒新生一次臂形成过程的相场法模拟结果
[1] Fu H Z, Guo J J, Liu L, et al.Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2009: 1(傅恒志, 郭景杰, 刘林等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2009: 1)
[2] Fu H Z, He G, Li J G.Observation of competitive growth in a directionally solidified nickel base single crystal superalloy[J]. Acta Metall. Sin., 1997, 33: 1233(傅恒志, 何国, 李建国. 单晶高温合金定向凝固过程中晶体竞争生长观察[J]. 金属学报, 1997, 33: 1233)
[3] Hu Z Q, Liu L R, Jin T.Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31: 1(胡壮麒, 刘丽荣, 金涛. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31: 1)
[4] D'Souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall. Mater. Transact., 2005, 36B: 657
[5] Yan Y H, Liu J W, Jia Z H, et al.Simulation and experimental studies on grain selection behavior of DD5 single crystal superalloy[J]. Mater. Sci. Forum, 2017, 878: 42
[6] Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studied on grain selection behavior of single crystal superalloy: I. Starter block[J]. Acta Metall. Sin., 2013, 49: 1508(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究I.引晶段[J]. 金属学报, 2013, 49: 1508)
[7] Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part[J]. Acta Metall. Sin., 2013, 49: 1521(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究II.螺旋段[J]. 金属学报, 2013, 49: 1521)
[8] Gao S F, Liu L, Wang N, et al.EBSD studies of grain evolution and grain selection behavior during the preparation of Ni-based single crystal superalloy DD3[J]. Acta Metall. Sin., 2011, 47: 1251(高斯峰, 刘林, 王柠等. 镍基单晶高温合金DD3制备过程中晶粒演化和选晶行为的EBSD研究[J]. 金属学报, 2011, 47: 1251)
[9] Wang N, Liu L, Gao S F, et al.Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. J. Alloys Compd., 2014, 586: 220
[10] Yang X L, Dong H B, Wang W, et al.Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129
[11] Zhang X L, Zhou Y Z, Jin T, et al.Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2012, 48: 1229(张小丽, 周亦胄, 金涛等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48: 1229)
[12] Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, A413-414: 571
[13] Trempa M, Reimann C, Friedrich J, et al.Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals[J]. J. Cryst. Growth, 2012, 351: 131
[14] Deng P R, Li J G.Orientation control of crystal growth for TbFe1.9 alloy in a magnetic field[J]. Rare Met. Mater. Eng., 2006, 35: 1311(邓沛然, 李建国. 磁场中TbFe1.9晶体生长的取向控制[J]. 稀有金属材料与工程, 2006, 35: 1311)
[15] Stanford N, Djakovic A, Shollock B, et al.Defect grains in the melt-back region of cmsx-4 single crystal seeds [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 719
[16] Meng X B, Li J G, Chen Z Q, et al.Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955
[17] Yang C, Liu L, Zhao X, et al.Formation of stray grains during directional solidification of a superalloy AM3[J]. Appl. Phys., 2014, 114A: 979
[18] Bogdanowicz W, Albrecht R, Sieniawski J, et al.The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418
[19] Walton D, Chalmers B.The origin of the preferred orientation in the columnar zone of ingots[J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447
[20] Rappaz M, Gandin C A.Modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
[21] Gandin C A, Rappaz M.A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[22] Li J J, Wang Z J, Wang Y Q, et al.Phase-field study of competitive dendritic growth of converging grains during directional solidification[J]. Acta Mater., 2012, 60: 1478
[23] Esaka H.Dendrite growth and spacing in succinonitrile-acetone alloys [D]. Lausanne, Switzerland: EPFL, 1986
[24] D'Souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4[J]. J. Mater. Sci., 2002, 37: 481
[25] Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys[J]. Mater. Sci. Eng., 2004, A374: 270
[26] Ardakani M G, D'Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 219
[27] He G, Li J G, Mao X M, et al.Investigation on competitive growth mechanism of crystals during unidirectional solidification[J]. J. Synth. Cryst., 1995, 24(4): 278(何国, 李建国, 毛协民等. 定向凝固晶粒宏观竞争生长机制的实验研究[J]. 人工晶体学报, 1995, 24: 278)
[28] Liu Z Y, Lei Y, Fu H Z.A study on mechanism of misoriented grain growth in single-crystal manufacture of DD8 nickel based superalloy[J]. Acta Metall. Sin., 2000, 36: 1(刘志义, 雷毅, 傅恒志. DD8镍基高温合金单晶制备中的杂晶长大机制[J]. 金属学报, 2000, 36: 1)
[29] Seo S M, Kim I S, Lee J H, et al.Grain structure and texture evolutions during single crystal casting of the Ni-base superalloy CMSX-4[J]. Met. Mater. Int., 2009, 15: 391
[30] Zhou Y Z, Volek A, Green N R.Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy[J]. Acta Mater., 2008, 56: 2631
[31] Zhou Y Z, Green N R.Competitive grain growth in directional solidification of a nickel-base superalloy [A]. Superalloys[M]. Warrendale, PA: TMS, 2008: 317
[32] Zhou Y Z, Jin T, Sun X F.Structure evolution in directionally solidified bicrystals of nickel base superalloys[J]. Acta Metall. Sin., 2010, 46: 1327(周亦胄, 金涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化[J]. 金属学报, 2010, 46: 1327)
[33] Epishin A I, Nolze G.Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys[J]. Crystallogr. Rep., 2006, 51: 710
[34] Zhou Y Z, Sun X F.Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy[J]. Sci. China: Tech. Sci., 2012, 56: 1327
[35] Lu Q, Li J G, Jin T, et al.Competitive growth in bi-crystal of Ni-based superalloys during directional solidification[J]. Acta Metall. Sin., 2011, 47: 641(卢琦, 李金国, 金涛等. 镍基双晶高温合金定向凝固过程中的竞争生长[J]. 金属学报, 2011, 47: 641)
[36] Zhao X B.Crystal orientation of single crystal superalloys under high thermal gradient directional solidification [D]. Xi'an: Northwestern Polytechnical University, 2010(赵新宝. 高梯度定向凝固单晶高温合金晶体取向研究 [D]. 西安: 西北工业大学, 2010)
[37] Yu H L, Lin X, Li J J, et al.Research on diverged bi-crystal competitive growth in directional solidification[J]. Acta Metall. Sin., 2013, 49: 58(宇红雷, 林鑫, 李俊杰等. 定向凝固发散双晶的竞争生长研究[J]. 金属学报, 2013, 49: 58)
[38] Yang C, Liu L, Zhao X B, et al.Competitive grain growth mechanism in three dimensions during directional solidification of a nickel-based superalloy[J]. J. Alloys Compd., 2013, 578: 577
[39] Yu H L, Li J J, Lin X, et al.Anomalous overgrowth of converging dendrites during directional solidification[J]. J. Cryst. Growth, 2014, 402: 210
[40] Liu Z Y, Lin M, Yu D E, et al.Dependence of competitive grain growth on secondary dendrite orientation during directional solidification of a Ni-based superalloy[J]. Metall. Mater. Trans., 2013, 44A: 5113
[41] Hu S S, Liu L, Cui Q W, et al.Converging competitive growth in bi-crystal of Ni-based superalloy during directional solidification[J]. Acta Metall. Sin., 2016, 52: 897(胡松松, 刘林, 崔强伟等. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长[J]. 金属学报, 2016, 52: 897)
[42] Hu S S, Yang W C, Cui Q W, et al.Effect of secondary dendrite orientations on competitive growth of converging dendrites of Ni-based bi-crystal superalloys[J]. Mater. Charact., 2017, 125: 152
[43] Eiken J.Dendritic growth texture evolution in Mg-based alloys investigated by phase-field simulation[J]. Int. J. Cast Met. Res., 2013, 22: 86
[44] Chen P, Tsai Y L, Lan C W.Phase field modeling of growth competition of silicon grains[J]. Acta Mater., 2008, 56: 4114
[45] Wang Y Q, Wang J C, Li J J.Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification[J]. Acta Phys. Sin., 2012, 61: 118103(王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究[J]. 物理学报, 2012, 61: 118103)
[46] Meng X B, Lu Q, Zhang X L, et al.Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame[J]. Acta Mater., 2012, 60: 3965
[47] Takaki T, Shimokawabe T, Ohno M, et al.Unexpected selection of growing dendrites by very-large-scale phase-field simulation[J]. J. Cryst. Growth, 2013, 382: 21
[48] Takaki T, Ohno M, Shimokawabe T, et al.Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal[J]. Acta Mater., 2014, 81: 272
[49] Takaki T, Ohno M, Shibuta Y, et al.Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy[J]. J. Cryst. Growth, 2016, 442: 14
[50] Takaki T, Sakane S, Ohno M, et al.Large-scale phase-field studies of three-dimensional dendrite competitive growth at the converging grain boundary during directional solidification of a bicrystal binary alloy[J]. ISIJ Int., 2016, 56: 1427
[51] Sakane S, Takaki T, Ohno M, et al.GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 84: 012063
[52] Tourret D, Karma A.Growth competition of columnar dendritic grains: a phase-field study[J]. Acta Mater., 2015, 82: 64
[53] Tourret D, Song Y, Clarke A J, et al.Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study[J]. Acta Mater., 2017, 122: 220
[54] Guo C W, Li J J, Yu H L, et al.Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains[J]. Acta Mater., 2017, 136: 148
[55] Viardin A, Zalo?nik M, Souhar Y, et al.Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model[J]. Acta Mater., 2017, 122: 386
[56] Pieters R, Langer J S.Noise-driven sidebranching in the boundary-layer model of dendritic solidification[J]. Phys. Rev. Lett., 1986, 56: 1948
[57] Langer J S.Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise[J]. Phys. Rev., 1987, 36A: 3350
[58] Barber M N, Barbieri A, Langer J S.Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification[J]. Phys. Rev., 1987, 36A: 3340
[59] Dougherty A, Kaplan P D, Gollub J P.Development of side branching in dendritic growth[J]. Phys. Rev. Lett., 1988, 58: 1652
[60] Brener E, Temkin D.Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth[J]. Phys. Rev., 1995, 51E: 351
[61] Pocheau A, Bodea S, Georgelin M.Self-organized dendritic sidebranching in directional solidification: Sidebranch coherence within uncorrelated bursts[J]. Phys. Rev., 2009, 80E: 031601.
[62] Guo C W, Li J J, Ma Y, et al.Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification[J]. Acta Phys. Sin., 2015, 64: 148101(郭春文, 李俊杰, 马渊等. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律[J]. 物理学报, 2015, 64: 148101)
[63] Esaka H, Tamura M, Shinozuka K.Analysis of yield rate in single crystal casting process using an engineering simulation model[J]. Mater. Trans., 2005, 44: 829
[64] Esaka H, Shinozuka K, Tamura M.Analysis of single crystal casting process taking into account the shape of pigtail[J]. Mater. Sci. Eng., 2005, A413: 151
[65] Pocheau A, Deschamps J, Georgelin M.Dendrite growth directions and morphology in the directional solidification of anisotropic materials[J]. JOM, 2007, 59(7): 71
[66] Ghmadh J, Debierre J M, Deschamps J, et al.Directional solidification of inclined structures in thin samples[J]. Acta Mater., 2014, 74: 255
[67] Deschamps J, Georgelin M, Pocheau A.Growth directions of microstructures in directional solidification of crystalline materials[J]. Phys. Rev., 2008, 78E: 011605
[68] Xing H, Ankit K, Dong X L, et al.Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: A phase-field study[J]. Int. J. Heat Mass Transfer, 2018, 117: 1107
[69] Xing H, Dong X L, Chen C L, et al.Phase-field simulation of tilted growth of dendritic arrays during directional solidification[J]. Int. J. Heat Mass Transfer, 2015, 90: 911
[70] George W L, Warren J A.A parallel 3D dendritic growth simulator using the phase-field method[J]. J. Comput. Phys., 2002, 177: 264
[71] Provatas N, Goldenfeld N, Dantzig J.Efficient computation of dendritic microstructures using adaptive mesh refinement[J]. Phys. Rev. Lett., 1997, 80: 3308
[72] Zhu C S, Li H, Feng L, et al.GPU accelerated phase-field simulation of convection effect on dendritic growth[J]. J. Comput. Theor. Nanosci., 2015, 12: 3591
[73] Yang C, Xu Q Y, Liu B C.GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy[J]. Comput. Mater. Sci., 2017, 136: 133
[1] 魏世忠,徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4): 523-538.
[2] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[3] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[4] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[5] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[6] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[7] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[8] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[9] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[10] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[11] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.
[12] 李言祥, 刘效邦. 定向凝固多孔金属研究进展[J]. 金属学报, 2018, 54(5): 727-741.
[13] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[14] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.
[15] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.