Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1690-1696    DOI: 10.11900/0412.1961.2020.00155
  本期目录 | 过刊浏览 |
Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为
郑晓航1, 宁睿1, 段佳彤2, 蔡伟1()
1 哈尔滨工业大学材料科学与工程学院 哈尔滨 150006
2 中国工程物理研究院科技信息中心 绵阳 621900
Martensitic Transformation and Damping Behavior of Ti70-xTa15Zr15Fex (x=0.3, 0.6, 1.0) Shape Memory Thin Films
ZHENG Xiaohang1, NING Rui1, DUAN Jiatong2, CAI Wei1()
1 Institue of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China
2 Center of Science and Technology, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
Xiaohang ZHENG, Rui NING, Jiatong DUAN, Wei CAI. Martensitic Transformation and Damping Behavior of Ti70-xTa15Zr15Fex (x=0.3, 0.6, 1.0) Shape Memory Thin Films[J]. Acta Metall Sin, 2020, 56(12): 1690-1696.

全文: PDF(2122 KB)   HTML
摘要: 

采用磁控溅射制备Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0,原子分数,%)合金薄膜,通过XRD、TEM、弯曲法和动态热机械分析研究Fe元素含量对合金薄膜组织结构、马氏体相变、力学性能和阻尼特性的影响。结果表明,Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜在室温下为母相与马氏体相共存,逆马氏体相变开始温度高于100 ℃,具有双程记忆效应。添加Fe元素可以提高薄膜的塑性和强度,延伸率可达到12.8% (x=1.0)。薄膜在升温降温过程中均可观察到较高的弛豫型内耗峰,当Fe含量为1.0%时,弛豫内耗峰最大值可达到0.116。

关键词 形状记忆合金薄膜马氏体相变阻尼特性    
Abstract

In recent years, there has been a rapid development in microelectromechanical systems owing to their lightweight and integration with small volume. The microactuater bears low-frequency vibrations during operations, which affects the safety and stability of the device. Ti-Ta-Zr-Fe thin film is a high-temperature shape memory alloy film, which has good shape memory effect and thermal stability. The addition of Fe can improve the plasticity of the film and make it promising to use in high-temperature miniature damping devices. Ti70-xTa15Zr15Fex (x=0.3, 0.6, and 1.0, atomic fraction, %) shape memory thin films were prepared by direct-current magnetron sputtering. The effect of the Fe content on the microstructures, martensitic transformation, mechanical properties, and damping behavior was studied by XRD, TEM, bending test, and dynamic mechanical analysis. It was found that the room-temperature phase composition of the alloy films with different Fe contents were in the parent and martensite phases. The reverse martensitic transformation temperature of the thin films was above 100 ℃, and the films exhibited the two-way shape memory effect. The addition of Fe enhanced the ductility and strength of the film. When the Fe content was 1.0%, the elongation could reach up to 12.8%. During the heating and cooling processes, the relaxation type friction peak was observed. The damping capacity during the relaxation processof the film containing 1.0%Fe could reach up to 0.116.

Key wordsshape memory thin film    martensiic transformation    damping property
收稿日期: 2020-05-11     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(51971083);国家自然科学基金项目(51731005)
作者简介: 郑晓航,女,1983年生,副教授,博士
xTiTaZrFe
0.369.6415.2314.870.26
0.669.6314.9214.820.63
1.069.9114.3914.760.94
表1  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)薄膜的实际成分 (atomic fraction / %)
图1  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)薄膜室温下的XRD谱
图2  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜的TEM明场像及相应的SAED花样
图3  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜的粒径分布图
图4  弯曲法测量的Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜随温度的变形过程
图5  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜室温下的拉伸应力-应变曲线
图6  Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)合金薄膜的多频阻尼-温度曲线
[1] Otsuka K, Wayman C M. Shape Memory Materials [M]. Cambridge: Cambridge University Press, 1999: 246
[2] Otsuka K, Ren X. Physical metallurgy of TiNi-based shape memory alloys [J]. Prog. Mater Sci., 2005, 50: 511
doi: 10.1016/j.pmatsci.2004.10.001
[3] Xu Z Y. Shape memory materials [J]. Trans. Nonferrous Met. Soc., 2001, 11: 1
[4] Miyazaki S, Fu Y Q, Huang W M. Thin Film Shape Memory Alloys: Fundamentals and Device Applications [M]. Cambridge: Cambridge University Press, 2009: 437
[5] Fu Y Q, Huang W M, Du H J, et al. Characterization of TiNi shape-memory alloy thin films for MEMS applications [J]. Surf. Coat. Technol., 2001, 145: 107
doi: 10.1016/S0257-8972(01)01324-X
[6] Wilson S A, Jourdain R P J, Zhang Q, et al. New materials for micro-scale sensors and actuators: An engineering review [J]. Mater. Sci. Eng., 2007, R56: 1
[7] Fu Y Q, Du H J, Huang W M, et al. TiNi-based thin films in MEMS applications: A review [J]. Sens. Actuators, 2004, 112A: 395
[8] Shin D D, Mohanchandra K P, Carman G P. Development of hydraulic linear actuator using thin film SMA [J]. Sens. Actuators, 2005, 119A: 151
[9] Fu Y Q, Luo J K, Flewitt A J, et al. Microactuators of free-standing TiNiCu films [J]. Smart Mater. Struct., 2007, 16: 2651
doi: 10.1088/0964-1726/16/6/070
[10] Winzek B, Schmitz S, Rumpf H, et al. Recent developments in shape memory thin film technology [J]. Mater. Sci. Eng., 2004, A378: 40
[11] Kim H Y, Mizutani M, Miyazaki S. Crystallization process and shape memory properties of Ti-Ni-Zr thin films [J]. Acta Mater., 2009, 57: 1920
doi: 10.1016/j.actamat.2008.12.036
[12] König D, Zarnetta R, Savan A, et al. Phase transformation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films [J]. Acta Mater., 2011, 59: 3267
doi: 10.1016/j.actamat.2011.01.066
[13] Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008
doi: 10.1016/j.scriptamat.2013.03.008
[14] Zheng X H, Sui J H, Zhang X, et al. Effect of Y addition on the martensitic transformation and shape memory effect of Ti-Ta high-temperature shape memory alloy [J]. J. Alloys Compd., 2012, 539: 144
doi: 10.1016/j.jallcom.2012.06.021
[15] Wang C H, Liu M, Hu P F, et al. The effects of α″ and ω phases on the superelasticity and shape memory effect of binary Ti-Mo alloys [J]. J. Alloys Compd., 2017, 720: 488
doi: 10.1016/j.jallcom.2017.05.299
[16] Zheng X H, Sui J H, Yang Z Y, et al. Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti-15Ta-15Zr alloy [J]. Chin. Phys., 2017, 26B: 056103
[17] Bellouard Y. Shape memory alloys for microsystems: A review from a material research perspective [J]. Mater. Sci. Eng., 2008, A481-482: 582
[18] Zhang F, Cui Y, Xue P F, et al. Microstructures and memory properties of Ti69Zr30Fe1 high-temperature shape memory alloy [J]. Rare Met. Mater. Eng., 2013, 42: 2131
[18] (张 菲, 崔 琰, 薛鹏飞等. Ti69Zr30Fe1高温形状记忆合金的微观结构和记忆特性 [J]. 稀有金属材料与工程, 2013, 42: 2131)
[19] Motemani Y, Buenconsejo P J S, Craciunescu C, et al. High-temperature shape memory effect in Ti-Ta thin films sputter deposited at room temperature [J]. Adv. Mater. Inter., 2014, 1: 1400019
doi: 10.1002/admi.201400019
[20] Ning R, Zheng X H, Yao J, et al. The effect of annealing treatment on microstructure and shape memory behavior of Ti-Ta-Zr thin films [J]. Vacuum, 2018, 153: 1
doi: 10.1016/j.vacuum.2018.03.044
[21] Buensconejo P J S, Kim H Y, Miyazaki S. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys [J]. Acta Mater., 2009,57: 2509
doi: 10.1016/j.actamat.2009.02.007
[22] Hsu H C, Hsu S K, Wu S C, et al. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys [J]. Mater. Charact., 2010, 61: 851
doi: 10.1016/j.matchar.2010.05.003
[23] Zheng P Q, Kucza N J, Patrick C L, et al. Mechanical and magnetic behavior of oligocrystalline Ni-Mn-Ga microwires [J]. J. Alloys Compd., 2015, 624: 226
doi: 10.1016/j.jallcom.2014.11.067
[24] Meng X L, Cai W, Wang L M, et al. Microstructure of stress-induced martensite in a Ti-Ni-Hf high temperature shape memory alloy [J]. Scr. Mater., 2001, 45: 1177
doi: 10.1016/S1359-6462(01)01147-2
[25] Yin F, Iwasaki S, Ping D, et al. Snoek-type high-damping alloys realized in β-Ti alloys with high oxygen solid solution [J]. Adv. Mater., 2006, 18: 1541
doi: 10.1002/(ISSN)1521-4095
[26] Wang Q, He Q X, Wang T, et al. Influence of solution-aging treatment on damping and tensile properties of Ti-36Nb-2Ta-3Zr-0.3O alloy [J]. Mater. Sci. Technol. 2019, 35: 37
doi: 10.1080/02670836.2018.1534717
[27] Segui C, Cesari E, Pons J, et al. Internal friction behaviour of Ni-Mn-Ga [J]. Mater. Sci. Eng., 2004, A370: 481
[28] Fan G, Zhou Y, Otsuka K, et al. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50-xCux shape memory alloys [J]. Acta Mater., 2006, 54: 5221
doi: 10.1016/j.actamat.2006.06.018
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[5] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[6] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[7] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[8] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[10] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[11] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[12] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[13] 王学,胡磊,陈东旭,孙松涛,李立全. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53(7): 888-896.
[14] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[15] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.