Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1461-1470    DOI: 10.11900/0412.1961.2018.00078
  本期目录 | 过刊浏览 |
NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究
韦昭召1,2, 马骁2(), 张新平2
1 五邑大学机电工程学院 江门 529020
2 华南理工大学材料科学与工程学院 广州 510640
Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy
Zhaozhao WEI1,2, Xiao MA2(), Xinping ZHANG2
1 School of Mechanical and Electrical Engineering, Wuyi University, Jiangmen 529020, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. Acta Metall Sin, 2018, 54(10): 1461-1470.

全文: PDF(2265 KB)   HTML
摘要: 

运用拓扑模型研究了等原子比NiTi合金B2-B19'马氏体相变晶体学,根据最优扭转角(ωo)准则计算得到ωo=-0.969°,并获得了马氏体惯习面指数及母相-马氏体相界面位错结构特征,计算结果与实验测量值非常接近。NiTi合金马氏体相变所产生的相变应变包含一个平行于惯习面的剪切应变和一个垂直于惯习面的轴向应变,轴向应变量表示B2-B19'相变所引起的宏观体积变化为$ε_{33}^{HP}$=6.6879×10-3,表明NiTi合金的负热膨胀现象来源于合金中马氏体相变所产生的相变应变。

关键词 拓扑模型NiTi合金马氏体相变晶体学相变应变负热膨胀    
Abstract

Some NiTi alloys, generally known as shape memory alloys or smart materials, exhibit larger negative thermal expansion (NTE) strain than that of traditional nonmetallic NTE materials. Furthermore, high strength and better ductility of NiTi alloy make it more advantageous compared to nonmetallic materials. The NTE response of NiTi alloy may be attributed to the transformation strain that originates from the volume change accompanying the B2-B19' martensitic transformation in the alloy. Therefore, it is of great importance and interests to study the martensitic transformation crystallography in NiTi alloy. In this work, the martensitic transformation crystallography in an equiatomic NiTi alloy was investigated by using the topological model, as well as the optimum twist criterion developed lately. The optimum twist angle, ωo, in NiTi alloy was determined to be -0.969°, and the so-obtained transformation crystallography results, including the habit plane index and parent-martensite orientation relationship, agree well with the corresponding experimental data and theoretical calculations in the literature. Furthermore, the martensitic transformation strain of NiTi alloy was calculated based on the analysis of interfacial dislocation movement, and the total transformation strain can be resolved into an in-habit-plane shear strain and an axial strain perpendicular to the habit plane. In particular, the value of the axial strain that represents the volume change due to the B19' to B2 transformation was found to be negative, indicating that the NiTi alloy shrinks during the reverse martensitic phase transformation when heated, which might shed some light on the relationship between the NTE mechanism and martensitic transformation in NiTi alloy. The measured NTE strain is much smaller than the theoretical calculated phase transformation strain in NiTi alloy, due to the self-accommodation effect of martensite variants and the compensation of transformation strains in polycrystalline materials.

Key wordstopological model    NiTi alloy    martensitic transformation crystallography    transformation strain    negative thermal expansion
收稿日期: 2018-03-05     
ZTFLH:  TG131  
基金资助:国家自然科学基金项目No.51571092,广东省自然科学基金项目No.2017A030310657,广东省“创新强校工程”青年创新人才类项目No.2016KQNCX170及五邑大学博士启动基金项目No.2015BS16
作者简介:

作者简介 韦昭召,男,1985年生,博士

图1  拓扑模型中母相与马氏体相界面的台阶结构示意图
图2  NiTi合金中B2母相与B19′马氏体相的晶体结构示意图
图3  母相与马氏体相晶格点阵在台阶面上自然双色花样图和共格双色花样图
图4  NiTi合金B2母相 (100)P晶面与B19′马氏体相(100)M晶面的晶体学位向关系示意图
图5  母相与马氏体相晶格点阵在台阶面上投影所得共格双色花样图和相变位错b+1/+1D沿xTP方向的侧视投影图
Type bx / nm by / nm bz / nm h / nm Burgers vector
Disconnection 0 0.03785 0.01344 0.30175 b+1/+1D=[100]P-[100]M
LID dislocation 0.06972 0.07413 0 0 bL=2sdK1bM2+cM2[011]M
表1  相变位错b+1/+1D和晶格不变应变位错bL的拓扑参数
Parameter TM Experiment[25]
ω=ωo=-0.969° ω=-1.000°
Habit plane (-0.8951, 0.3940, 0.2084)P (-0.8969, 0.3899, 0.2087)P (-0.8684, 0.4138, 0.2688)P
d D / nm 0.662 0.667 ?
d L / nm 1.840 1.831 ?
Orientation (100)P ^ (100)M : 1.300° (100)P ^ (100)M : 1.287° See Table 4 in Ref.[25]
relationship [01?1]P^[010]M: 0.969° [01?1]P^[010]M: 1.000°
表2  NiTi合金马氏体相变晶体学的拓扑模型计算结果与实验数据对比
[1] Hummel F A.Thermal expansion properties of some synthetic lithia minerals[J]. J. Am. Ceram. Soc., 1951, 34: 235
[2] Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3-1050 Kelvin in ZrW2O8[J]. Science, 1996, 272: 90
[3] Mavoori H, Jin S.Low-thermal-expansion copper composites via negative CTE metallic elements[J]. JOM, 1998, 50(6): 70
[4] Zheng Y J, Li J T, Cui L S. Martensitic transformations and thermal expansion behaviors of structural heterogeneous NiTi alloys [J]. Mater. Sci. Eng., 2006, A438-440: 567
[5] Li J F, Zheng Z Q, Li X W, et al.Effect of compressive stress aging on transformation strain and microstructure of Ni-rich TiNi alloy[J]. Mater. Sci. Eng., 2009, A523: 207
[6] Ahadi A, Matsushita Y, Sawaguchi T, et al.Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy[J]. Acta Mater., 2017, 124: 79
[7] Zhao Z X, Ma X, Cao S S, et al.Anisotropic negative thermal expansion behavior of the as-fabricated Ti-rich and equiatomic Ti-Ni alloys induced by preferential grain orientation[J]. Shap. Mem. Superelasticity, 2018, 4: 218
[8] Zhao Z X, Ma X, Zeng C Y, et al.Reversible negative thermal expansion response and phase transformation behavior of a Ti-rich Ti54Ni46 alloy prepared by rapid solidification [A]. Proceedings of the International Conference on Martensitic Transformations[C]. Chicago: Springer, 2018: 189
[9] Wayman C M.Introduction to the Crystallography of Martensitic Transformations[M]. New York: MacMillan, 1964: 1
[10] Ball J M, James R D.Fine phase mixtures as minimizers of energy[J]. Arch. Ration. Mech. Anal., 1987, 100: 13
[11] Pond R C, Celotto S, Hirth J P.A comparison of the phenomenological theory of martensitic transformations with a model based on interfacial defects[J]. Acta Mater., 2003, 51: 5385
[12] Pond R C, Ma X, Chai Y W, et al.Topological modelling of martensitic transformations[J]. Disloc. Solids, 2007, 13: 225
[13] Ma X, Pond R C.Martensitic interfaces and transformation crystallography in Pu-Ga alloys[J]. J. Mater. Sci., 2011, 46: 4236
[14] Ma X, Pond R C. Defect modelling of martensitic interfaces in plate martensite [J]. Mater. Sci. Eng., 2008, A481-482: 404
[15] Wei Z Z, Ma X, Zhang X P.Study on the dislocation structure of interphase interface and martensite transformation crystallography in Ni2MnGa alloy[J]. Acta Metall. Sin., 2013, 49: 187(韦昭召, 马骁, 张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49: 187)
[16] Qiu D, Zhang W Z.Research progress in precipitation crystallography models[J]. Acta Metall. Sin., 2006, 42: 341(邱冬, 张文征. 沉淀相变晶体学模型的研究进展[J]. 金属学报, 2006, 42: 341)
[17] Monroe J A, Gehring D, Karaman I, et al.Tailored thermal expansion alloys[J]. Acta Mater., 2016, 102: 333
[18] Li Y Y, Cao S S, Ma X, et al.Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy[J]. Mater. Sci. Eng., 2017, A705: 273
[19] Wei Z Z, Ma X, Zhang X P.A criterion for determining the optimum value of twist in the topological model[J]. Philos. Mag. Lett., 2014, 94: 288
[20] Prokoshkin S D, Korotitskiy A V, Brailovski V, et al.On the lattice parameters of phases in binary Ti-Ni shape memory alloys[J]. Acta Mater., 2004, 52: 4479
[21] Bilby B A, Crocker A G.The theory of the crystallography of deformation twinning[J]. Proc. Roy. Soc. London, 1965, 288A: 240
[22] Ostuka K, Ren X.Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Prog. Mater. Sci., 2005, 50: 511
[23] Knowles K M, Smith D A.The crystallography of the martensitic transformation in equiatomic nickel-titanium[J]. Acta Metall., 1981, 29: 101
[24] Knowles K M.A high-resolution electron microscope study of nickel-titanium martensite[J]. Philos. Mag., 1982, 45A: 357
[25] Matsumoto O, Miyazaki S, Otsuka K, et al.Crystallography of martensitic transformation in Ti-Ni single crystals[J]. Acta Metall., 1987, 35: 2137
[26] Nishida M, Ohgi H, Itai I, et al.Electron microscopy studies of twin morphologies in B19' martensite in the Ti-Ni shape memory alloy[J]. Acta Metall. Mater., 1995, 43: 1219
[27] Hirth J P, Lothe J.Theory of Dislocations[M]. New York: McGraw-Hill, 1982: 1
[1] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[2] 宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.
[3] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[4] 李大圣; 张宇鹏; 熊志鹏; 张新平 . 轻质高强NiTi形状记忆合金制备及其超弹性行为[J]. 金属学报, 2008, 44(8): 995-1000 .
[5] 阚前华; 康国政; 钱林茂; 刘宇杰; 王海林 . 超弹性NiTi合金相变棘轮行为的实验研究[J]. 金属学报, 2008, 44(8): 949-955 .
[6] 张红钢; 何勇; 刘雪峰; 谢建新 . NiTi形状记忆合金热压缩变形行为及本构关系[J]. 金属学报, 2007, 43(9): 930-936 .
[7] 张宇鹏; 张新平; 钟志源 . 梯度孔隙率大孔隙尺寸NiTi形状记忆合金制备及其相变和超弹性行为[J]. 金属学报, 2007, 43(11): 1221-1227 .
[8] 姜海昌; 杜华; 谢惠民; 戎利建 . 扫描云纹干涉法研究多孔NiTi形状记忆合金的微观形变特性[J]. 金属学报, 2006, 42(11): 1153-1157 .
[9] 张伟红; 张士宏 . NiTi合金热压缩实验数据的修正及其本构方程[J]. 金属学报, 2006, 42(10): 1036-1040 .
[10] 邢奇凤; 邢献然; 杜凌; 于然波; 陈骏; 邓金侠; 罗君 . 水热法合成负热膨胀材料ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .
[11] 徐爱群 . NiTi合金中一个新的时效析出相[J]. 金属学报, 2004, 40(2): 125-129 .
[12] 姜训勇; 高学平; 宋德瑛 . 普通渗碳剂与新型高聚物渗碳剂进行NiTi合金固体渗碳的对比[J]. 金属学报, 2003, 39(9): 962-966 .
[13] 陈民芳; 杨贤金; 何菲; 刘亚; 朱胜利; 崔振铎 . NaOH浓度对NiTi形状记忆合金表面类骨磷灰石形成的影响[J]. 金属学报, 2003, 39(8): 859-864 .
[14] 柳伟; 郑玉贵; 饶光斌; 姚治铭; 柯伟 . 相变伪弹性对NiTi合金多相流损伤的影响[J]. 金属学报, 2002, 38(2): 185-188 .
[15] 沈惠敏;胡梅生;桂建敏;袁方;王业宁;郭锦芳;千东范. NiTi(Fe)合金的预相变和伪弹性[J]. 金属学报, 1988, 24(2): 84-88.