Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1364-1376    DOI: 10.11900/0412.1961.2017.00249
  研究论文 本期目录 | 过刊浏览 |
MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响
郑浩然1, 陈民芳1,2(), 李祯1, 由臣1, 刘德宝1
1 天津理工大学材料科学与工程学院 天津 300384
2 天津理工大学天津市光电显示材料与器件重点实验室 天津 300384
Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites
Haoran ZHENG1, Minfang CHEN1,2(), Zhen LI1, Chen YOU1, Debao LIU1
1 School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2 Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, China
引用本文:

郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
Haoran ZHENG, Minfang CHEN, Zhen LI, Chen YOU, Debao LIU. Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites[J]. Acta Metall Sin, 2017, 53(10): 1364-1376.

全文: PDF(19180 KB)   HTML
摘要: 

为改善复合材料中纳米增强体易团聚的问题,将陶瓷纳米棒HA进行表面包覆MgO改性处理(m-HA),并采用高熔体剪切搅拌技术制备Mg-3Zn-0.8Zr合金(MZZ)、Mg-3Zn-0.8Zr/1HA复合材料(MZZH)和Mg-3Zn-0.8Zr/1m-HA复合材料(MZZMH)。研究了m-HA对Mg-Zn-Zr/HA复合材料微观组织、力学性能和耐蚀性能的影响。结果表明,陶瓷纳米棒HA的加入细化了MZZ合金的组织,提高了MZZ合金的力学性能和电化学耐蚀性能。与MZZH相比,MZZMH的晶粒更加细小均匀,陶瓷纳米棒在基体中的分布更均匀。挤压态MZZMH的力学性能较MZZH显著提高,其硬度、屈服强度、抗拉强度和延伸率分别达到92 HV、291 MPa、325 MPa和8.62%。MZZMH的自腐蚀电位比MZZH高59 mV,MZZMH的腐蚀速率较MZZH降低,在SBF中浸泡7 d后稳定在5 mm/a。腐蚀机理的不同使MZZMH复合材料的耐蚀性能优于MZZH。因此,MgO改性可有效促进HA纳米棒的均匀分布,进而显著提高MZZMH的力学性能和耐蚀性。

关键词 MgO包覆HA纳米棒镁基复合材料微观组织力学性能腐蚀性能    
Abstract

Magnesium metal matrix composites (MMCs) are hot research spots in recent years because of their adjustable mechanical and corrosion properties. However, the agglomerate particles in MMCs limit its applications in many areas. In order to solve this problem, MgO surface modified hydroxyapatite ceramic nanorods (m-HA) were prepared and added as reinforcement in this work. Mg-3Zn-0.8Zr alloy (MZZ), Mg-3Zn-0.8Zr composites with unmodified (MZZH) and modified (MZZMH) nanorods were produced by high shear mixing technology. Effects of m-HA nanorods on the microstructure, mechanical properties and corrosion properties of Mg-Zn-Zr/m-HA composites were investigated. The results showed that the addition of HA nanorods refined the grain size of MZZ alloy and gave a raise to the mechanical properties and electrochemical corrosion resistance of MZZ alloy. The grain size of MZZMH was smaller than that of MZZH and the distribution of m-HA nanorods in the matrix was more uniform than that of HA nanorods. Moreover, the as-extruded MZZMH composite exhibited a yield tensile strength of 291 MPa and ultimate tensile strength of 325 MPa, greater than that of MZZH. The corrosion potential of MZZMH was approximately 59 mV greater than that of MZZH. The corrosion rate of MZZMH was 5 mm/a after immersion 7 d in SBF, lower than that of MZZH. The corrosion resistance of MZZMH was better than that of MZZH due to the different corrosion mechanism. Surface corrosion products of MZZMH was alternating Mg(OH)2 and Ca-P compound at the early stage of immersion, but surface corrosion layer of MZZH specimen was always Mg(OH)2. The mechanical properties and corrosion resistance of Mg-Zn-Zr/m-HA composites were improved by the addition of m-HA.

Key wordsMgO coated HA nanoparticle    magnesium matrix composite    microstructure    mechanical property    corrosion property
收稿日期: 2017-06-26     
ZTFLH:  TB333  
基金资助:国家自然科学基金项目No.51371126,天津市科技重大专项与工程计划No.15ZXQXSY00080及天津市高等学校科技发展基金项目No.20110301
作者简介:

作者简介 郑浩然,女,1990年生,硕士生

图1  MgO、HA、m-HA的XRD谱
图2  m-HA和HA纳米颗粒的TEM像及EDS谱
图3  铸态MZZMH、MZZH和MZZ的微观组织OM像
图4  MZZ和MZZH的冷却曲线
图5  挤压态MZZMH和MZZH复合材料的OM和SEM像
图6  MZZMH和MZZH复合材料的力学性能
图7  挤压态MZZMH、MZZH及MZZ的极化曲线
Composite Ecorr (vs SCE) icorr βc (vs SCE) βa (vs SCE) Rp Pi R1 R2 R3
mV μAcm-2 mVdecade-1 mVdecade-1 kΩcm2 mma-1 Ωcm2 Ωcm2 Ωcm2
MZZMH -1403±12 217±14 149±20 126±7 1.37±0.22 4.96±0.32 61.00±2.3 37.18±1.6 7.55±0.9
MZZH -1462±18 436±17 254±13 176±8 1.04±0.09 9.96±0.39 53.12±1.2 54.14±1.1 6.61±0.3
MZZ -1542±10 501±13 257±15 219±5 1.03±0.06 11.45±0.29 47.09±3.3 10.05±1.0 -
表1  挤压态MZZMH、MZZH及MZZ在模拟体液(SBF)中的电化学参数
图8  挤压态MZZMH、MZZH及MZZ的交流阻抗谱及其拟合所用等效电路
图9  挤压态MZZMH和MZZH在SBF中浸泡不同时间的体式显微镜照片及去腐蚀产物后的SEM像
图10  挤压态MZZMH和MZZH在SBF中的pH值、析氢及腐蚀速率曲线
图11  挤压态MZZH在SBF中浸泡不同时间的腐蚀形貌及EDS分析
图12  挤压态MZZMH在SBF中浸泡不同时间的腐蚀形貌及EDS分析
图13  MZZMH和MZZH在SBF中浸泡前期的腐蚀机理图
[1] Witte F, Fischer J, Nellesen J, et al.In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27: 1013
[2] Zhao Y C, Huang G S, Wang G G, et al.Influence of grain orientation on the corrosion behavior of rolled AZ31 magnesium alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1387
[3] Qin F X, Ji C, Dan Z H, et al.Corrosion behavior of MgZnCa bulk amorphous alloys fabricated by spark plasma sintering[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 793
[4] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[5] Chaubey A K, Jha B B, Mishra B K.Microstructure and mechanical properties of Mg-7.4% Al alloy matrix composites reinforced by nanocrystalline Al-Ca intermetallic particles[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 444
[6] Wang Y, Wang H Y, Xiu K, et al.Fabrication of TiB2 particulate reinforced magnesium matrix composites by two-step processing method[J]. Mater. Lett., 2006, 60: 1533
[7] Soon L L, Zuhailawati H, Suhaina I, et al.Prediction of compressive strength of biodegradable Mg-Zn/HA composite via response surface methodology and its biodegradation[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 464
[8] Witte F, Feyerabend F, Maier P, et al.Biodegradable magnesium-hydroxyapatite metal matrix composites[J]. Biomaterials, 2007, 28: 2163
[9] Gao J H, Guan S K, Ren Z W, et al.Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid[J]. Mater. Lett., 2011, 65: 691
[10] Zhao F Z, Feng X H, Yang Y S.Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 652
[11] Lei T, Tang W, Cai S H, et al.On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction[J]. Corros. Sci., 2012, 54: 270
[12] Ratna Sunil B, Ganapathy C, Sampath Kumar T S, et al. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants[J]. J. Mech. Behav. Biomed. Mater., 2014, 40: 178
[13] Zhou D S, Qiu F, Wang H Y, et al.Manufacture of nano-sized particle-reinforced metal matrix composites: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 798
[14] Gu X N, Wang X, Li N, et al.Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration[J]. J. Biomed. Mater. Res., 2011, 99B: 127
[15] Ye X Y, Chen M F, Yang M, et al.In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites[J]. J. Mater. Sci. Mater. Med., 2010, 21: 1321
[16] Liu D B, Zuo Y B, Meng W Y, et al.Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology[J]. Mater. Sci. Eng., 2012, C32: 1253
[17] Li Z, Chen M F, Li W, et al.The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn-Zr-Sr alloy[J]. J. Alloys Compd., 2017, 702: 290
[18] Li Z, Sun S Z, Chen M F, et al.In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws[J]. Mater. Sci. Eng., 2017, C75: 1268
[19] He S Y, Sun Y, Chen M F, et al.Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 814
[20] Jin X Y, Zhuang J Z, Zhi Z, et al.Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH[J]. J. Colloid Interface Sci., 2015, 443: 125
[21] Huang Y, Liu D B, Anguilano L, et al.Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite[J]. Mater. Sci. Eng., 2015, C54: 120
[22] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena[M]. 2nd Ed., Oxford: Elsevier, 2004: 20
[23] Song G L.Corrosion and Protection of Magnesium Alloys [M]. Beijing: Chemical Industry Press, 2006: 94(宋光铃. 镁合金腐蚀与防护 [M]. 北京: 化学工业出版社, 2006: 94)
[24] Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H, et al. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys[J]. Corros. Sci., 2012, 64: 184
[25] Argade G R, Kandasamy K, Panigrahi S K, et al.Corrosion behavior of a friction stir processed rare-earth added magnesium alloy[J]. Corros. Sci., 2012, 58: 321
[26] Shi Z M, Atrens A.An innovative specimen configuration for the study of Mg corrosion[J]. Corros. Sci., 2011, 53: 226
[27] King A D, Birbilis N, Scully J R.Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study[J]. Electrochim. Acta, 2014, 121: 394
[28] Wang Y, Fan Z, Zhou X, et al.Characterisation of magnesium oxide and its interface with α-Mg in Mg-Al-based alloys[J]. Phil. Mag. Lett., 2011, 91: 516
[29] Splinter S J, Rofagha R, McIntyre N S, et al. XPS characterization of the corrosion films formed on nanocrystalline Ni-P alloys in sulphuric acid[J]. Surf. Interface Anal., 1996, 24: 181
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.