Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 601-608    DOI: 10.11900/0412.1961.2016.00504
  论文 本期目录 | 过刊浏览 |
Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响
胡小锋1(),杜瑜宾1,2,闫德胜1,戎利建1
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Cu Precipitation and Its Effect on Damping Capacity and Mechanical Properties of FeCrMoCu Alloy
Xiaofeng HU1(),Yubin DU1,2,Desheng YAN1,Lijian RONG1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
Xiaofeng HU, Yubin DU, Desheng YAN, Lijian RONG. Cu Precipitation and Its Effect on Damping Capacity and Mechanical Properties of FeCrMoCu Alloy[J]. Acta Metall Sin, 2017, 53(5): 601-608.

全文: PDF(3220 KB)   HTML
摘要: 

采用扫描透射电镜(STEM)和动态机械分析仪(DMA)研究了FeCrMoCu合金(Cu添加量为1.0%和2.0%,质量分数)在不同冷速条件下Cu的析出行为及其对阻尼性能和力学性能的影响。结果表明:1.0Cu合金中Cu主要以过饱和的形式固溶在基体,当冷速较慢(炉冷)时会析出少量的富Cu相,该相尺寸较小(<5 nm),Cu含量较低(3.7%);Cu增加到2.0%后,随着冷速的下降(从水冷到空冷,最后到炉冷),合金中先析出数量较少、尺寸较小的富Cu相,随后析出数量较多、尺寸稍大的球状第二相(10~15 nm),最后析出相粗化成圆棒状(100~400 nm)但数量显著减少,后2种析出相的Cu含量明显增加(30%~40%)。含Cu第二相的析出,明显增加合金平均内应力,使合金的阻尼性能显著下降,因此有第二相析出的2.0Cu合金阻尼性能明显低于1.0Cu合金。与此同时,合金的强度随着富Cu相的析出而明显提高,其中尺寸较小的富Cu相析出强化效果较好,且对塑韧性的影响相对较小。含1.0%Cu的FeCrMoCu合金可以同时获得较好的阻尼性能和力学性能。

关键词 FeCrMoCu合金Cu冷却速率析出相阻尼性能    
Abstract

Fe-Cr based damping alloys have high mechanical properties and good corrosion resistance, which have been applied to reduce vibration and noise. Their high damping behavior is primarily attributed to the stress-induced irreversible movement of 90° magnetic domain walls. Most researches mainly focused on the damping behavior of these alloys. However, little attention has been paid to the mechanical properties, which are the important consideration for engineering applications. Recently, a FeCrMo damping alloy with Cu addition was found to possess higher damping capacity and higher mechanical properties. In this work, scanning transmission electron microscopy (STEM) and dynamic mechanical analyzer (DMA) were used to investigate the Cu precipitation and its influences on damping capacity and mechanical properties of FeCrMoCu alloy (1.0% and 2.0% Cu addition, mass fraction) with dif ferent cooling rates. The results show that the Cu element in 1.0Cu alloy is fully dissolved in the matrix. When the cooling rate is slow (furnace cooling), there will precipitate a small amount of second phases, which are small in size (<5 nm) and contain relatively few Cu atoms (3.7%). As for 2.0Cu alloy, with decreasing cooling rate (from water cooling to air cooling, and to furnace cooling) there will firstly precipitate a small amount of second phase with small size (<5 nm); subsequently, the particles grow into a spherical shape (10~15 nm) and their number increases; at last, the particles transform into round bar with coarse size of 100~400 nm and the precipitate number decreases obviously. The Cu content of the latter two precipitates increased obviously (about 30%~40%). These precipitates will significantly increase the average internal stress of the experimental FeCrMoCu alloy, which will obviously decrease the damping capacity. Therefore, the damping capacity of 2.0Cu alloy is much lower than that of 1.0Cu alloy. Meanwhile, the precipitate will obviously improve the strength. Compared with coarsen Cu-riched phase, the finer second phase has better hardening effect and its influence on ductility and toughness is relatively small. The FeCrMoCu alloy with addition of 1.0% Cu can obtain better damping capacity and mechanical properties at the same time.

Key wordsFeCrMoCu alloy    Cu    cooling rate    precipitate    damping capacity
收稿日期: 2016-11-11     
基金资助:国家自然科学基金项目No.51301170
图1  2种合金经不同冷却速率处理后的显微组织
图2  2种合金经不同冷却速率处理后的晶粒大小
图3  2种合金经不同冷速处理后的TEM像
Alloy Cooling Precipitate Mass fraction / %
method size / nm Cu Cr Mo Fe
1.0Cu FC <5 3.7 18.6 2.6 Bal.
2.0Cu WC <5 4.5 18.3 2.5 Bal.
AC 10~15 31.4 14.1 1.7 Bal.
FC 10~15 32.9 12.6 1.8 Bal.
100~400 39.3 11.7 1.6 Bal.
表1  合金中析出相的尺寸和EDS成分分析结果
图4  2种合金经不同冷速处理后的阻尼-应变振幅曲线
图5  2种合金经不同冷速处理后的强度对比
图6  2种合金经不同冷速处理后的延伸率和冲击功对比
[1] Hu X F, Li X Y, Zhang B, et al.Magnetic domain structure and damping capacity of Fe-13Cr-2.5Mo alloy[J]. Mater. Sci. Eng., 2010, B171: 40
[2] Pulino-Sagradi D, Sagradi M, Karimi A, et al.Damping capacity of Fe-Cr-X high-damping alloys and its dependence on magnetic domain structure[J]. Scr. Mater., 1998, 39: 131
[3] Zhou Z C, Wei J N, Han F S.Influences of heat treatment and grain size on the damping capacity of an Fe-Cr-Al alloy[J]. Phys. Status Solidi, 2002, 191A: 89
[4] Wang H, Wang F, Xiao J, et al.Effect of cooling rate on damping capacity of Fe-Cr based ferromagnetic metal alloy[J]. Mater. Sci. Eng., 2016, A650: 382
[5] Hu X F, Li X Y, Zhang B, et al.Influences of additions of Nb, Ti and Cu on damping capacity and corrosion resistance of Fe-13Cr-2.5Mo alloy[J]. Acta Metall. Sin., 2009, 45: 717
[5] (胡小锋, 李秀艳, 张波等. Nb, Ti和Cu对Fe-13Cr-2.5Mo合金阻尼与腐蚀性能的影响[J]. 金属学报, 2009, 45: 717)
[6] Wang H, Wang F, Liu H T, et al.Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe-Cr based alloy[J]. Mater. Sci. Eng., 2016, A667: 326
[7] Hu X F, Liu S W, Li X Y, et al.Influence of static stress on damping behavior in Fe-15Cr and Fe-8Al ferromagnetic alloys[J]. Mater. Sci. Eng., 2011, A528: 5491
[8] Karimi A, Giauque P H, Martin J L.Magnetomechanical damping in plasma sprayed iron-chromium based coatings[J]. J. Appl. Phys., 1996, 79: 1670
[9] Azco?tia C, Karimi A.Magnetomechanical damping in Fe-Cr alloys and effect of Al and Mo addition[J]. J. Alloys Compd., 2000, 310: 160
[10] Karimi A, Azcoitia C, Degauque J.Relationships between magnetomechanical damping and magnetic properties of Fe-Cr(Al, Mo)
[10] alloys [J]. J. Magn. Magn. Mater., 2000, 215-216: 601
[11] Karimi A, Giauque P H, Martin J L. Magneto-mechanical damping in plasma sprayed Fe-Cr-X alloys [J]. Mater. Sci. Forum, 1995, 179-181: 679
[12] Xu Y G, Chen X G.On relationship between annealing treatment and magnetostriction behavior of Fe-16Cr-2.5Mo damping alloy[J]. J. Alloys Compd., 2014, 582: 364
[13] Lin R R, Liu F, Cao M Z, et al.Influence of annealing and substitution elements on damping capacity and strength of Fe-Cr-Al based alloys[J]. Acta Metall. Sin., 2005, 41: 958
[13] (林仁荣, 刘芳, 曹名洲等. 退火及置换元素对Fe-Cr-Al基合金阻尼性能及强度的影响[J]. 金属学报, 2005, 41: 958)
[14] Lin R R, Cao M Z, Yang R. Damping capacity of the Fe-Cr-Al based alloys [J]. Mater. Sci. Forum, 2005, 475-479: 261
[15] Hu X F, Du Y B, Yan D S, et al.Effect of Cu content on microstructure and properties of Fe-16Cr-2.5Mo damping alloy[J]. J. Mater. Sci. Technol., in press
[16] Nakashima K, Futamura Y, Tsuchiyama T, et al.Interaction between dislocation and copper particles in Fe-Cu alloys[J]. ISIJ Int., 2002, 42: 1541
[17] Kimura Y, Takaki S.Phase transformation mechanism of Fe-Cu alloys[J]. ISIJ Int., 1997, 37: 290
[18] Zhang Z W.Research development of high strength low alloy (HSLA) steels[J]. Mater. China, 2016, 35: 141
[18] (张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35: 141)
[19] Xu Z, Zhao L C.Principle of Solid Phase Transformation of Metals [M]. Beijing: Science Press, 2004: 150
[19] (徐洲, 赵连城. 金属固态相变原理 [M]. 北京: 科学出版社, 2004: 150)
[20] Deschamps A, Militzer M, Poole W J.Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy[J]. ISIJ Int., 2001, 41: 196
[21] Takaki S, Fujioka M, Aihara S, et al.Effect of copper on tensile properties and grain-refinement of steel and its relation to precipitation behavior[J]. Mater. Trans., 2004, 45: 2239
[22] Xiao J M.Alloy Phase and Phase Transformation [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2004: 307
[22] (肖纪美. 合金相与相变 [M]. 第2版, 北京: 冶金工业出版社, 2004: 307)
[23] Wang W G, Zhou B X.The correlation of damping capacity with grain-boundary precipitates in Fe-Cr-based damping alloys annealed at high temperature[J]. Mater. Sci. Eng., 2004, A366: 45
[24] Smith G W, Birchak J R.Internal stress distribution theory of magnetomechanical hysteresis-an extension to include effects of magnetic field and applied stress[J]. J. Appl. Phys., 1969, 40: 5174
[25] Smith G W, Birchak J R.Effect of internal stress distribution on magnetomechanical damping[J]. J. Appl. Phys., 1968, 39: 2311
[26] Goodman S R, Brenner S S, Low J R.An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: Atom probe analyses[J]. Metall. Trans., 1973, 4: 2371
[27] Goodman S R, Brenner S S, Low J R.An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy[J]. Metall. Trans., 1973, 4: 2363
[28] Li Z, He Z Q, Jin J J, et al.Development of Aeronautical Ultra Strength Steels [M]. Beijing: National Defense Industry Press, 2012: 45
[28] (李志, 贺自强, 金建军等. 航空超高强度钢的发展 [M]. 北京: 国防工业出版社, 2012: 45)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[9] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[12] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[13] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[14] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[15] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.