Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 539-548    DOI: 10.11900/0412.1961.2016.00494
  论文 本期目录 | 过刊浏览 |
Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征
徐洋,鲍思前(),赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing
Yang XU,Siqian BAO(),Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
Yang XU, Siqian BAO, Gang ZHAO, Xiangbin HUANG, Rusheng HUANG, Bingbing LIU, Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. Acta Metall Sin, 2017, 53(5): 539-548.

全文: PDF(6859 KB)   HTML
摘要: 

利用定量逐层研磨和计算机辅助重建及可视化技术,并结合电子背散射衍射(EBSD)方法,研究了Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌。结果表明,Goss取向晶粒主要呈“塔状”,黄铜取向晶粒则类似“上大下小”倒锥状,{411}<148>取向晶粒也表现为“塔状”和倒锥状。而{111}<112>取向晶粒形貌各异,没有一致性。与其它取向晶粒相比,Goss取向晶粒在三维尺度上没有尺寸优势,Goss取向晶粒异常长大前,其长大主要受曲率控制。

关键词 Hi-B钢Goss取向晶粒二次再结晶三维形貌EBSD    
Abstract

Microstructure and texture evolution of Hi-B steel have been extensively studied in the past decades, and the microstructures are ordinarily characterized only using a single two-dimensional plane of polished or thin foil specimen. Much information on the morphologies is lost owing to the fact that a large part of microstructure is embedded beneath the polished surface, or removed during specimen preparation. Recently, computer-aided three-dimensional morphologies have been developed which can visualize microstructure in metals. The three-dimensional visualization promotes a better understanding of the actual information of polycrystalline materials, especially when the grain morphologies and size were required in three dimensions. In this work, three-dimensional morphologies of different oriented grains which include Goss, brass, {411}<148> and {111}<112> oriented grains in Hi-B steel formed during early stage of secondary recrystallization annealing were investigated by a combination of serial sectioning, computer-aided reconstruction and visualization, and electron back-scattered diffraction technique, and then the growth behavior of Goss oriented grains before abnormal growth was discussed. The results show that Goss oriented grains mainly exhibit pagoda shape, brass oriented grains are similar to inverted taper shape, which the grain sizes reduce gradually from the surface of the sample to the internal along normal direction, and {411}<148> oriented grains also exhibit pagoda shape and inverted taper shape. However, the morphologies of {111}<112> oriented grains show irregular shape. Compared with other oriented grains, Goss oriented grains have no size advantages on three-dimensional scale, and the growth of Goss oriented grains is mainly controlled by curvature before they grow up abnormally.

Key wordsHi-B steel    Goss oriented grain    secondary recrystallization    three-dimensional morphology    EBSD
收稿日期: 2016-11-07     
基金资助:国家自然科学基金项目No.51274155
图1  图像定位和目标组织标记示意图
图2  等效长方体几何尺寸示意图
图3  二次再结晶退火初期样品表面EBSD取向图
图4  图3中G1~G8晶粒三维形貌图
图5  G3晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
G1 102.60 102.89 93.96 1∶1∶0.92
G2 195.46 170.28 131.10 1∶0.87∶0.67
G3 142.38 160.40 137.70 1∶1.13∶0.97
G4 87.50 60.56 84.01 1∶0.69∶0.96
G5 114.95 130.50 111.30 1∶1.14∶0.97
G6 90.87 85.52 91.13 1∶0.94∶1
G7 103.66 119.92 91.35 1∶1.16∶0.88
G8 74.80 72.60 70.02 1∶0.97∶0.94
表1  图3中G1~G8晶粒等效长方体几何尺寸
图6  图3中B1~B5晶粒三维形貌图
图7  B4晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
B1 102.77 86.60 51.23 1∶0.84∶0.5
B2 76.83 68.13 77.30 1∶0.89∶1
B3 154.94 113.41 65.36 1∶0.73∶0.42
B4 215.78 110.36 64.00 1∶0.51∶0.3
B5 71.03 66.62 77.30 1∶0.94∶1.08
表2  B1~B5晶粒等效长方体几何尺寸
图8  图3中L1~L5晶粒三维形貌图
图9  L4晶粒在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
L1 121.66 128.66 110.77 1∶1.06∶0.91
L2 102.19 129.06 108.79 1∶1.26∶1.06
L3 166.95 209.40 163.40 1∶1.25∶0.98
L4 108.99 114.76 137.55 1∶1.05∶1.26
L5 79.73 66.32 78.10 1∶0.83∶0.98
表3  L1~L5晶粒等效长方体几何尺寸
图10  图3中T1~T8晶粒三维形貌图
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
T1 105.82 97.30 44.60 1∶0.92∶0.42
T2 174.79 128.21 105.93 1∶0.73∶0.61
T3 130.89 108.47 70.65 1∶0.83∶0.54
T4 117.18 103.08 79.97 1∶0.88∶0.68
T5 92.49 90.13 93.10 1∶0.97∶1
T6 109.33 105.44 105.72 1∶0.96∶0.96
T7 101.18 110.19 80.50 1∶1.09∶0.8
T8 118.90 122.84 156.50 1∶1.03∶1.32
表4  图3中T1~T8晶粒等效长方体几何尺寸
[1] Goss N P.Electrical sheet and method and apparatus for its manufacture and test [P]. US Pat., 1965559, 1934
[2] Littmann M F, Heek J E.Process of increasing the permeability of oriented silicon steels [P]. US Pat., 2599340, 1952
[3] Littmann M F.Structures and magnetic properties of grain-oriented 3.2% silicon-iron[J]. J. Appl. Phys., 1967, 38: 1104
[4] Hillert M.On the theory of normal and abnormal grain growth[J]. Acta Metall., 1965, 13: 227
[5] Harase J, Shimizu R.Distribution of {100}<001> oriented grains in the primary recrystallized 3%Si-Fe alloy[J]. Trans. Jpn. Inst. Met., 1988, 29: 388
[6] Shimizu R, Harase J.Coincidence grain boundary and texture evolution in Fe-3%Si[J]. Acta Metall., 1989, 37: 1241
[7] Hayakawa Y, Szpunar J A, Palumbo G, et al.The role of grain boundary character distribution in Goss texture development in electrical steels[J]. J. Magn. Magn. Mater., 1996, 160: 143
[8] Rajmohan N, Szpunar J A.An analytical method for characterizing grain boundaries around growing Goss grains during secondary recrystallization[J]. Scr. Mater., 2001, 44: 2387
[9] Hayakawa Y, Kurosawa M.Orientation relationship between primary and secondary recrystallized texture in electrical steel[J]. Acta Mater., 2002, 50: 4527
[10] Park H, Kim D Y, Hwang N M, et al.Microstructural evidence of abnormal grain growth by solid-state wetting in Fe-3%Si steel[J]. J. Appl. Phys., 2004, 95: 5515
[11] Wu K M, Enomoto M.Three-dimensional analysis of degenerate ferrite in an Fe-C-Mo alloy[J]. Chin. J. Stereol. Image Anal., 2004, 9: 134
[11] (吴开明, Enomoto M.Fe-C-Mo合金中退化铁素体的三维分析[J]. 中国体视学与图像分析, 2004, 9: 134)
[12] Wu K M.3-D morphology observation of degenerate ferrite in steel Fe-0.28C-3.0Mo using serial sectioning and computer-aided reconstruction[J]. Acta Metall. Sin., 2005, 41: 1237
[12] (吴开明. 连续截面和计算机辅助重建法观察Fe-0.28C-3.0Mo合金钢退化铁素体的三维形貌[J]. 金属学报, 2005, 41: 1237)
[13] Luan J H, Liu G Q, Wang H.Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall. Sin., 2011, 47: 69
[13] (栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47: 69)
[14] Zhang Q.Curvature-driven grain growth by cellular automaton simulation in isothermal process [D]. Shenyang: Northeastern University, 2012
[14] (张倩. 等温过程曲率驱动晶粒长大的元胞自动机模拟 [D]. 沈阳: 东北大学, 2012)
[15] He Z Z, Zhao Y, Luo H W.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 102
[15] (何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 102)
[16] Gottstein G, Molodov D A, Shvindlerman L S.Grain boundary migration in metals: Recent developments[J]. Interf. Sci., 1998, 6: 7
[17] Burke J E, Turnbull D.Recrystallization and grain growth[J]. Prog. Metal Phys., 1952, 3: 220
[18] Lin P, Palumbo G, Harase J, et al.Coincidence site lattice (CSL) grain boundaries and Goss texture development in Fe-3%Si alloy[J]. Acta Mater., 1996, 44: 4677
[19] Takamiya T, Kurosawa M, Komatsubara M. Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 334
[20] Yan M Q, Qian H, Yang P, et al.Analysis of micro-texture during secondary recrystallization in a Hi-B electrical steel[J]. J. Mater. Sci. Technol., 2011, 27: 1065
[21] Wang H, Luo L J, Wang J A.Formation and growth of cubic grains during rolling-annealing process in Fe-3.2%Si alloy[J]. Trans. Mater. Heat Treat., 2012, 33(5): 70
[21] (王辉, 骆靓鉴, 王均安. 铁硅合金轧制-退火过程中立方取向晶粒的形核与长大[J]. 材料热处理学报, 2012, 33(5): 70)
[22] Zhou B X.Issues concerning the formation of cube texture of silicon-iron alloy[J]. Baosteel Technol., 2000, (5): 52
[22] (周邦新. 铁硅合金中形成立方织构的有关问题[J]. 宝钢技术, 2000, (5): 52)
[23] Park H K, Park C S, Na T W, et al.Irregular or smooth grain boundaries evolved after secondary recyrstallization of Fe-3%Si steel[J]. Mater. Trans., 2012, 53: 658
[24] Park J Y, Szpunar J A. Influence of the primary recrystallization texture on abnormal grain growth of Goss grains in grain oriented electrical steels [J]. Mater. Sci. Forum, 2002, 408-412: 821
[25] Nakashima S, Takashima K, Harase J.Effect of silicon content on secondary recrystallization in grain-oriented electrical steel produced by single-stage cold rolling process[J]. ISIJ Int., 1991, 31: 1007
[26] Jiang S H, Mao W M, Yang P, et al.Recrystallization behavior of warm rolled Fe-6.5%Si alloy sheet[J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1643
[26] (蒋虽合, 毛卫民, 杨平等. Fe-6.5%Si合金温轧后退火过程中再结晶行为[J]. 北京科技大学学报, 2014, 36: 1643)
[27] Liu Z Q, Yang P, Mao W M, et al.Effect of {114}<418> texture on abnormal growth during secondary recrystallization in grain-oriented steel[J]. Acta Metall. Sin., 2015, 51: 769
[27] (刘志桥, 杨平, 毛卫民等. 取向硅钢中{114}<418>织构对二次再结晶时晶粒异常长大的影响[J]. 金属学报, 2015, 51: 769)
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[4] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[6] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[7] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[8] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[9] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[10] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[13] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[14] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[15] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.