Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1045-1052    DOI: 10.11900/0412.1961.2016.00066
  论文 本期目录 | 过刊浏览 |
高锰TRIP钢高速拉伸时的马氏体转变行为分析*
王丽娜1,2,杨平1(),毛卫民1
1 北京科技大学材料科学与工程学院, 北京 100083
2 北京科技大学天津学院材料系, 天津 301830
ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES
Lina WANG1,2,Ping YANG1(),Weimin MAO1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Materials, School of Tianjin, University of Science and Technology Beijing, Tianjin 301830, China
全文: PDF(1016 KB)   HTML
摘要: 

利用EBSD技术对不同应变速率下单向拉伸高锰TRIP钢中的马氏体相变进行了观察, 使用XRD数据计算了奥氏体(γ), hcp马氏体(ε-M)和bcc马氏体(α’-M)的体积分数, 并对γε-M和ε-M→α’-M两阶段相变的变体选择进行了理论计算. 结果表明, 高速拉伸时TRIP行为仍然具有取向依赖性, 这是由不同取向γ晶粒内α’-M变体的机械功差异引起的. 应变速率的提高促进ε-M→α’-M转变, 但总的马氏体转变量降低, 即高速拉伸抑制了TRIP效应. TRIP钢静态拉伸时α’-M变体选择较强, 动态拉伸时变体选择减弱. 静态拉伸时, <111>γ和<100>γ晶粒内α’-M变体选择可用局部应力对变体做功来计算. 高速拉伸时, 需结合应力对α’-M变体做功大小及应变能、界面能来分析这些γ晶粒内的变体选择规律. 与1个α’-M变体单独出现相比, 一对具有特殊取向关系的变体同时出现, 可以降低变体的应变能, 使得不利变体能够出现.

关键词 高锰钢马氏体转变变体选择电子背散射衍射(EBSD)    
Abstract

Among the wide variety of recently developed steels, high manganese transformation-induced plasticity (TRIP) steels with low stacking fault energy (SFE) are particularly promising. Outstanding mechanical properties combining a high ductility and a high strength are then obtained. Compared to the static deformation of high manganese TRIP steels, the behaviors of martensitic transformation and mechanical properties of such steels during dynamic deformation may be different. In this work, martensitic transformation of high manganese TRIP steel at different strain rates was characterized by the EBSD technique. The volume fractions of austenite (γ), hcp martensite (ε-M) and bcc martensite (α’-M) were calculated based on the XRD data. Meanwhile, variant selections of martensitic transformation in γε-M and ε-M→α’-M transformation were investigated by theoretical calculation. It is shown that orientation dependence of TRIP effect during tension exists even at high strain rates and can be ascribed to the influence of mechanical work in differently oriented γ grains. The transformation of ε-M→α’-M was promoted, but the total amount of transformed martensite decreased, which means that TRIP effect was restricted at high strain rates. The α’-M variant selection is more obvious during static tension and became weaker during dynamic tensile deformation. α’-M variant selection can be predicted by the calculated mechanical works induced by the local stress in <111>γ and <100>γ grains during static tension. However, during dynamic tension, the mechanism of variant selection needs to be explained by analyzing the mechanical works induced by the local stress, the strain energy and the interfacial energy in these grains comprehensively. Compared to the occurrence of a single α’-M variant, a pair of α’-M variants having specific orientation relationship reduces the strain energy, then unfavored α’-M variants appear.

Key wordshigh manganese steel    martensitic transformation    variant selection    EBSD
收稿日期: 2016-02-26     
基金资助:* 国家自然科学基金资助项目51271028

引用本文:

王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
Lina WANG, Ping YANG, Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES. Acta Metall Sin, 2016, 52(9): 1045-1052.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00066      或      https://www.ams.org.cn/CN/Y2016/V52/I9/1045

图1  未变形高锰TRIP钢的SEM像
图2  未变形高锰TRIP钢的XRD谱
图3  不同应变速率拉伸40%的高锰TRIP钢的XRD谱
图4  不同应变速率拉伸40%的高锰TRIP钢中γ, ε-M和α’-M相的体积分数
图5  40%拉伸高锰TRIP钢<111>γ晶粒的取向成像分析
图6  <111>γ晶粒24个α’-M变体对应的机械功计算值
图7  1个(0002)ε-M面内6个α’-M变体形成示意图
图8  40%拉伸高锰TRIP钢<100>γ晶粒的取向成像分析
图9  <100>γ晶粒中24个α’-M变体对应的机械功计算值
图10  40%拉伸高锰TRIP钢中马氏体相变的取向依赖性
图11  <110>γ晶粒中24个α’-M变体对应的机械功计算值
[1] Gr?ssel O, Krüger L, Frommeyer G, Meyer L W.Int J Plast, 2000; 16: 1391
[2] Frommeyer G, Brüx U, Neumann P.ISIJ Int, 2003; 43: 438
[3] Sugimoto K, Usul N, Kobayshi M, Hashimoto S.ISIJ Int, 1992; 32: 1311
[4] Sakuma Y, Matlock D K, Krauss G.Metall Trans, 1992; 23A: 1233
[5] Talonen J,H?nninen H, Nenonen P, Pape G. Metall Trans,2005; 36A: 421
[6] Gong X, Fan J L, Huang B Y, Tian J M.Mater Sci Eng, 2010; A527: 7565
[7] Lichtenfeld J A, Mataya M C, Van Tyne C J.Metall Mater Trans, 2006; 37A: 147
[8] Das A, Sivaprasad S, Ghosh M, Chakraborti P C, Tarafder S.Mater Sci Eng, 2008; A486: 283
[9] Bressanelli J P, Moskowitz A.Trans ASM, 1966; 59: 223
[10] Hao Q G, Qin S W, Liu Y, Zuo X W, Chen N L, Huang W, Rong Y H.Mater Sci Eng, 2016; A662: 16
[11] Wang H Z, Sun X R, Yang P, Mao W M, Meng L.J Mater Sci Technol, 2015; 31: 191
[12] Murr L E, Staudhammer K P, Hecker S S.Metall Trans, 1982;13A: 627
[13] Arpan D, Tarafder S. Int J Plast, 2009; 25: 2222
[14] Dash J, Otte H M.Acta Metall, 1963; 11: 1169
[15] Nagy E, Mertinger V, Tranta F, Sólyom J.Mater Sci Eng, 2004; A378: 308
[16] Kitahara H, Ueji R, Tsuji N, Minamino Y.Acta Mater, 2006; 54:1279
[17] Lee S H, Kang J, Han H N, Oh K H, Lee H C, Suh D W, Kim S J.ISIJ Int, 2005; 45: 1217
[18] Miyamoto G, Iwata N, Takayama N, Furuhara T.Acta Mater, 2012; 60: 1139
[19] Martin é, Capolungo L, Jiang L, Jonas J J.Acta Mater, 2010; 58: 3970
[20] Jonas J J, Mu S, Al-Samman T, Gottstein G, Jiang L, Martin é.Acta Mater, 2011; 59: 2046
[21] Hamidreza J, Ehsan B, Akinobu S, Nobuhiro T.J Alloys Compd, 2013; 577S: 668
[22] Humbert M, Petit B, Bolle B, Gey N. Mater Sci Eng, 2007; A454-455: 508
[23] Yang P, Liu T Y, Lu F Y, Meng L.Steel Res Int, 2012; 83: 368
[24] Cullity B D, Stock S R.Elements of X-Ray Diffraction. 3rd Ed., New Jersey: Prentice Hall, 2001: 351
[25] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K,Scr Mater, 2004; 50: 1445
[26] Sato K, Ichinose M, Hirotsu Y, Inoue Y.ISIJ Int, 1989; 29: 868
[27] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387-389: 158
[28] Remy L, Pineau A.Mater Sci Eng, 1977; A28: 99
[29] Schumann H. KristallGeometrie. Leipzig: VEB Deutscher Verlag, 1979: 160
[30] Kireeva I V, Chumlyakov Y I.Mater Sci Eng, 2008; A481: 737
[1] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[2] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[3] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[4] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[5] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[6] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[7] 陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层*[J]. 金属学报, 2014, 50(4): 423-430.
[8] 王西霞,郭晖, 王鼎, 白银, 杨善武, 贺信莱. Fe-C-Mn-Si钢中奥氏体共格孪晶界对贝氏体铁素体变体选择的影响[J]. 金属学报, 2012, 48(4): 385-392.
[9] 黄洪涛 刘伟 A. Godfrey 唐瑞鹤 刘庆. AZ31镁合金单轴压缩中孪生行为研究[J]. 金属学报, 2012, 48(3): 357-362.
[10] 文玉华 张万虎 司海涛 熊仁龙 彭华备. 高Si奥氏体高Mn钢加工硬化行为及机制的研究[J]. 金属学报, 2012, 48(10): 1153-1159.
[11] 白涛 李东 关凯书. 机械滚压对304L不锈钢组织和性能的影响[J]. 金属学报, 2011, 47(11): 1459-1463.
[12] 徐明舟 王建军 刘春明. 新型无Ni高N奥氏体不锈钢的低温变形行为[J]. 金属学报, 2011, 47(10): 1335-1341.
[13] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[14] 杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 I. 相变特点、孪生及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 657-665.
[15] 杨平 鲁法云 孟 利 崔凤娥. 高锰TRIP/TWIP钢压缩过程晶体学行为的EBSD分析 II. 马氏体内取向差、取向变化及奥氏体取向的影响[J]. 金属学报, 2010, 46(6): 666-673.