Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 877-885    DOI: 10.11900/0412.1961.2017.00320
  本期目录 | 过刊浏览 |
Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征
鲍思前(), 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊
武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing
Siqian BAO(), Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081,China
引用本文:

鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. Acta Metall Sin, 2018, 54(6): 877-885.

全文: PDF(6386 KB)   HTML
摘要: 

利用定量逐层研磨和计算机辅助重建及可视化技术,并结合电子背散射衍射(EBSD)技术,研究了Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌,并探讨了其长大规律和特征。研究表明,在三维尺度上,异常长大Goss取向晶粒呈现“饼形”晶粒形貌,异常长大过程中遵循“饼形”长大规律,即处在次表层的二次再结晶晶核在中间层快速长大取得尺寸优势后,反向沿厚度方向长大到样品表面,并在表面能的作用下继续沿板面方向异常长大,最终使得在板面方向的尺寸远大于厚度方向的尺寸;在Goss取向晶粒异常长大过程中,一些基体大尺寸晶粒由于尺寸优势会阻挡Goss取向晶粒长大,从而暂时保留在晶粒内部形成“岛状”晶粒。而在长大前沿,由于基体晶粒尺寸的不均匀性,特别是遇到一些大尺寸晶粒无法在短期内被吞噬掉,或者是2个异常长大的Goss取向晶粒相遇后造成某些方向长大停止,而一些基体晶粒被包裹进来成为“岛状”或“半岛状”晶粒,还有可能是不同取向晶粒晶界迁移率存在明显的差异性等方面的影响,使得Goss取向晶粒在某些方向长大受阻,从而表现出晶界前沿参差不齐,长大呈现典型的各向异性特征。

关键词 Hi-B钢二次再结晶Goss取向晶粒三维形貌EBSD    
Abstract

Grain-oriented silicon steel is mainly used as the core material in electrical transformers, and its magnetic properties are closely related to the sharpness of Goss texture ({110}<001>) formed by secondary recrystallization during high-temperature annealing. However, the mechanism of the abnormal growth of Goss oriented grains is still disputed in the literatures. It is well know that microstructure characterization is important to study the relevant mechanism and improve the properties of materials. Usually, the microstructures are characterized only using a single two-dimensional plane of polished or thin foil specimen. Much information on the morphologies is lost owing to the fact that a large part of microstructures is embedded beneath the polished surface, or removed during specimen preparation. Recently, computer-aided three-dimensional morphologies have been developed which can visualize microstructures in metals. The three-dimensional visualization promotes a better understanding of the actual information of polycrystalline materials, especially when the grain morphologies and size are required in three dimensions. In this work, the three-dimensional morphologies of abnormally grown Goss oriented grains in Hi-B steel during secondary recrystallization annealing were investigated by a combination of serial sectioning, computer-aided reconstruction and visualization, and electron back-scattered diffraction technique, then the rules and features of abnormal grown Goss oriented grains were also discussed. The results show that the abnormally grown Goss oriented grains have a pancake-shape grain structure in three-dimensional scale, and follow corresponding grain growth behavior. That is, the secondary recrystallization nuclei of the Goss oriented grains in the subsurface grow quickly into the center layer with a grain size advantage, and further extend back to the surface, then continue to grow abnormally along the plate plane direction with the help of surface energy. Finally, the dimension in the plate plane direction is much larger than that of the thickness direction. During abnormal growth of Goss oriented grains, some large-size grains will prevent Goss grains growth, and temporarily retain in the grains to become 'island' grains. On the other hand, the growth front is quite ragged because Goss oriented grains growth is blocked in some directions, showing typical anisotropic growth features, and there are three possible reasons to account for this phenomenon. One reason is that Goss oriented grains may encounter some large-size grains due to inhomogeneity of matrix grains size, and these large-size grains will block the growth. Another is that two abnormally grown Goss oriented grains which meet together may cause the stagnation of grains growth in some directions, and at the same time some matrix grains are encapsulated to form 'island' or 'peninsula' grains. Furthermore, it is also possible that there are obvious differences in grain boundary mobilities between different oriented grains and Goss oriented grains.

Key wordsHi-B steel    secondary recrystallization    Goss oriented grain    three-dimensional morphology    EBSD
收稿日期: 2017-07-28     
ZTFLH:  TG142.77  
基金资助:国家自然科学基金项目No.51274155
作者简介:

作者简介 鲍思前,男,1974年生,副教授,博士

图1  二次再结晶退火中不同中断退火温度时样品表面EBSD取向图
图2  不同视场下Goss取向晶粒G1和G2的三维形貌图
图3  Goss取向晶粒G1和G2中4个大尺寸“岛状”晶粒的三维形貌图
图4  Goss取向晶粒G1和G2在不同研磨层的微观形貌
Grain No. L (RD) / μm W (TD) / μm H (ND) / μm LWH
G1 & G2 688.34 691.74 300.00 1∶1∶0.44
G3 487.27 450.82 300.00 1∶0.93∶0.62
G4 915.23 780.58 300.00 1∶0.85∶0.33
G5 1675.85 1034.05 300.00 1∶0.62∶0.18
G6 1940.25 1817.07 300.00 1∶0.94∶0.15
A1 476.60 300.83 300.00 1∶0.63∶0.63
B1 256.74 184.47 180.40 1∶0.72∶0.7
F1 165.96 161.77 157.22 1∶0.97∶0.95
O1 145.68 120.98 136.80 1∶0.83∶0.94
表1  Goss取向晶粒G1~G6及4个大尺寸“岛状”晶粒的等效长方体几何尺寸
图5  Goss 取向晶粒G3~G6 的三维形貌图
[1] He Z Z, Zhao Y, Luo H W.Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012: 102(何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012: 102)
[2] Dunn C G, Lionetti F.The effect of orientation difference on grain boundary energies[J]. Trans. AIME, 1949, 185: 125
[3] Dunn C G, Daniels F W, Bolton M J.Measurement of relative interface energies in twin related crystals[J]. Trans. AIME, 1950, 188: 368
[4] Hillert M.On the theory of normal and abnormal grain growth[J]. Acta Metall., 1965, 13: 227
[5] Shimizu R, Harase J.Coincidence grain boundary and texture evolution in Fe-3%Si[J]. Acta Metall., 1989, 37: 1241
[6] Harase J, Shimizu R.Distribution of {100}<001> oriented grains in the primary recrystallized 3%Si-Fe alloy[J]. Trans. Jpn. Inst. Met., 1988, 29: 388
[7] Harase J, Shimizu R, Dingley D J.Texture evolution in the presence of precipitates in Fe-3%Si alloy[J]. Acta Metall. Mater., 1991, 39: 763
[8] Hayakawa Y, Szpunar J A.The role of grain boundary character distribution in secondary recrystallization of electrical steels[J]. Acta Mater., 1997, 45: 1285
[9] Rajmohan N, Szpunar J A, Hayakawa Y.A role of fractions of mobile grain boundaries in secondary recrystallization of Fe-Si steels[J]. Acta Mater., 1999, 47: 2999
[10] Komatsubara M, Hayakawa Y, Takamiya T, et al. Newly developed grain-oriented Si-steel with thinner gauges[J]. J. Phys. IV France, 1998, 8(PR2): Pr2-467
[11] Park H, Kim D Y, Hwang N M, et al.Microstructural evidence of abnormal grain growth by solid-state wetting in Fe-3%Si steel[J]. J. Appl. Phys., 2004, 95: 5515
[12] Lee D K, Ko K J, Lee B J, et al.Monte Carlo simulations of abnormal grain growth by sub-boundary-enhanced solid-state wetting[J]. Scr. Mater., 2008, 58: 683
[13] Ko K J, Park J T, Kim J K, et al.Morphological evidence that Goss abnormally growing grains grow by triple junction wetting during secondary recrystallization of Fe-3%Si steel[J]. Scr. Mater., 2008, 59: 764
[14] Fan X M, Lin Y, Huang J W, et al.The three-dimensional morphology reconstruction of boride layer on armco iron based on serial sectioning[J]. Mater. Sci. Technol., 2013, 21(6): 17(樊新民, 林银, 黄洁雯等. 基于系列磨片的纯铁渗硼层形貌三维重建[J]. 材料科学与工艺, 2013, 21(6): 17)
[15] Morito S, Edamatsu Y, Ichinotani K, et al.Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. J. Alloys Compd., 2013, 577(suppl.1): S587
[16] Wu K M, Enomoto M.Three-dimensional analysis of degenerate ferrite in an Fe-C-Mo alloy[J]. Chin. J. Stereol. Image Anal., 2004, 9: 134(吴开明, Enomoto M.Fe-C-Mo合金中退化铁素体的三维分析[J]. 中国体视学与图像分析, 2004, 9: 134)
[17] Wu K M.3-D morphology observation of degenerate ferrite in steel Fe-0.28C-3.0Mo using serial sectioning and computer-aided reconstruction[J]. Acta Metall. Sin., 2005, 41: 1237(吴开明. 连续截面和计算机辅助重建法观察Fe-0.28C-3.0Mo合金钢退化铁素体的三维形貌[J]. 金属学报, 2005, 41: 1237)
[18] Li Y, Xu L, Li S M, et al.Three-dimensional microstructure morphology of ZL102 Al-Si alloy[J]. Foundry, 2015, 64: 814(李英, 徐磊, 李双明等. ZL102铝硅合金的三维显微组织形态研究[J]. 铸造, 2015, 64: 814)
[19] Luan J H, Liu G Q, Wang H.Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall. Sin., 2011, 47: 69(栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报, 2011, 47: 69)
[20] Bao S Q, Xu Y, Zhao G, et al.Microstructure, texture and precipitates of grain-oriented silicon steel produced by thin slab casting and rolling process[J]. J. Iron Steel Res., Int., 2017, 24: 91
[21] Huang X B, Bao S Q, Zhao G, et al.Primary recrystallization kinetics and texture evolution during annealing of low temperature grain-oriented silicon steel[J]. J. Iron Steel Res., 2017, 29: 577(黄祥斌, 鲍思前, 赵刚等. 低温取向硅钢初次再结晶动力学模型及织构演变[J]. 钢铁研究学报, 2017, 29: 577)
[22] Xu Y, Bao S Q, Zhao G, et al.Three-dimensional morphologies of different oriented grains in Hi-B steel formed during early stage of secondary recrystallization annealing[J]. Acta Metall. Sin., 2017, 53: 539(徐洋, 鲍思前, 赵刚等. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53: 539)
[23] Shirdel M, Mirzadeh H, Parsa M H.Abnormal grain growth in AISI 304L stainless steel[J]. Mater. Charact., 2014, 97: 11
[24] Chen N, Zaefferer S, Lahn L, et al.Effects of topology on abnormal grain growth in silicon steel[J]. Acta Mater., 2003, 51: 1755
[25] Hwang N M.Simulation of the effect of anisotropic grain boundary mobility and energy on abnormal grain growth[J]. J. Mater. Sci., 1998, 33: 5625
[26] Yan M Q, Qian H, Yang P, et al.Analysis of micro-texture during secondary recrystallization in a Hi-B electrical steel[J]. J. Mater. Sci. Technol., 2011, 27: 1065
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[4] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[5] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[6] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[7] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[8] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[9] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[10] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[11] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[12] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[13] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[14] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[15] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.