Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 950-958    DOI: 10.11900/0412.1961.2017.00398
  本期目录 | 过刊浏览 |
Schmid因子的理论计算及其在镁合金高速变形过程中的应用
刘晏宇, 毛萍莉(), 刘正, 王峰, 王志
沈阳工业大学材料科学与工程学院 沈阳 110870
Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys
Yanyu LIU, Pingli MAO(), Zheng LIU, Feng WANG, Zhi WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(3152 KB)   HTML
摘要: 

为了便于分析镁合金在高速变形过程中的变形机制,计算了4种滑移方式(基面滑移、柱面滑移、锥面<a>滑移和锥面<c+a>滑移)和2种孪晶方式({101?2}拉伸孪晶和 <\({10 \bar{1} 1}\)>压缩孪晶)的Schmid因子。结合电子背散射衍射(EBSD)技术,获得了轧制态AZ31镁合金原始样品的Schmid因子实验值,并将理论计算值与实验值进行了比较。采用Hopkinson压杆对AZ31镁合金轧制板材在1600 s-1的应变速率下进行了高速冲击实验,对所获得的样品进行了金相组织观察。结合Schmid因子计算结果,讨论了不同方向样品在不同加载方向下的主要变形机制。结果表明,Schmid因子的理论计算值与实验值可以很好吻合。Schmid因子计算简单、表达方便,可以有效分析镁合金中主要的变形方式和解释应力-应变曲线特征。镁合金中不同变形方式的Schmid因子值及其变化规律均不相同,其计算结果可为镁合金中织构所引起的各向异性现象的分析提供理论依据。

关键词 Schmid因子镁合金变形机制EBSD    
Abstract

As an important parameter, the Schmid factor has been widely applied to analyze the deformation modes in metals. In order to analyze the deformation mechanisms of magnesium alloys under high strain rate, the Schmid factors of four slip modes (basal, prismatic, pyramidal <a> and pyramidal <c+a> slips) and two twinning systems ({101?2} tension and {101?1} contraction twinnings) were systematically calculated in this work. The experimental values of Schmid factor of as-received AZ31 rolling magnesium alloy sheets were obtained by electron backscatter diffraction (EBSD) technique, and then the theoretical calculated values were compared with those values. The high strain rate compression test of AZ31 rolling magnesium sheets was conducted by using split Hopkinson pressure bar at the strain rate of 1600 s-1, and the microstructures after compression were observed by optical microscopy. The Schmid factors and microstructures are combined to discuss the predominant deformation mechanisms for different orientation samples under different loading directions. The results showed that the theoretical calculated values of Schmid factors are in good agreement with their experimental values. Therefore, the Schmid factor, owing to its simplicity and conveniene, could be used to analyze the predominant deformation mechanism and interpret the unique characteristics of "true stress-true strain" curves in magnesium alloys. Furthermore, since the Schmid factor and its variation trend associated with deformation behavior in magnesium alloys are related, the calculation result of Schmid factor can provide a theoretical analytic approach to understand anisotropic phenomena caused by strong texture in magnesium alloys.

Key wordsSchmid factor    magnesium alloy    deformation mechanism    EBSD
收稿日期: 2017-09-22     
ZTFLH:  TG146.2  
基金资助:2017年沈阳市科技计划项目No.17-9-6-00
作者简介:

作者简介 刘晏宇,男,1993年生,硕士

引用本文:

刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys. Acta Metall Sin, 2018, 54(6): 950-958.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00398      或      https://www.ams.org.cn/CN/Y2018/V54/I6/950

图1  加载方向与c轴、a轴、滑移面(或孪晶)法向和滑移(或孪晶)方向的相对关系
图2  基面滑移的Schmid因子(SF)等高线图
图3  柱面滑移的SF等高线图
图4  锥面<a>滑移的SF等高线图
图5  锥面<c+a>滑移的SF等高线图
图6  {1012}拉伸孪晶的SF等高线图
θ / (°) Basal <a> Prismatic slip Pyramidal Pyramidal {1012} {1011}
slip <a> slip <c+a> slip twinning twinning
0 0 0 0 0.446 0.499* -
15 0.218 0.025 0.110 0.499* 0.475 -
47 0.499* 0.238 0.390 0.292 0.260 0.259
70 0.354 0.425 0.498* 0.474 0.073 0.490
80 0.201 0.478 0.490 0.499* 0.021 0.492*
90 0 0.499* 0.441 0.446 - 0.470
表1  各变形方式在不同受力方向的最大SF
图7  {1011}压缩孪晶的SF等高线图
图8  AZ31镁合金轧板ND方向样品的显微组织和微观极图
图9  镁合金各变形方式的SF图
图10  不同方向AZ31镁合金轧板样品在1600 s-1应变速率的应力-应变曲线
图11  应变为0.05时,TD、RD和ND样品的显微组织
[1] Liu Z, Wang Y, Wang Z G, et al.Developing trends of research and application of magnesium alloys[J]. Chin. J. Mater. Res., 2000, 14: 449(刘正, 王越, 王中光等. 镁基轻质材料的研究与应用[J]. 材料研究学报, 2000, 14: 449)
[2] Hipert M, Styczynski A, Kiese J, et al.Magnesium Alloys and Their Application[M]. Hamburg: Werkstoff-Informations Gesellshaft, 1998: 319
[3] Mordike B L, Ebert T.Magnesium: Properties—applications—potential[J]. Mater. Sci. Eng., 2001, A302: 37
[4] Mises R V.Mechanik der plastischen Form?nderung von Kristallen[J]. Z. Angew. Math. Mech., 1928, 8: 161
[5] Liu Y, Mao P, Liu Z, et al.Deformation mechanism of highly textured AZ31 sheet under high strain rates[J]. Materialwiss. Werkstofftech., 2017, 48: 1093
[6] Schmid E, Boas W.Plasticity of Crystals[M]. London: FA Hughes, 1950: 353
[7] Wu B L, Zhao Y H, Du X H, et al.Ductility enhancement of extruded magnesium via yttrium addition[J]. Mater. Sci. Eng., 2010, A527: 4334
[8] Agnew S R, Horton J A, Lillo T M, et al.Enhanced ductility in strongly textured magnesium produced by equal channel angular processing[J]. Scr. Mater., 2004, 50: 377
[9] Barnett M R, Keshavarz Z, Ma X.A semianalytical Sachs model for the flow stress of a magnesium alloy[J]. Metall. Mater. Trans., 2006, 37A: 2283
[10] Lou X Y, Li M, Boger R K, et al.Hardening evolution of AZ31B Mg sheet[J]. Int. J. Plast., 2007, 23: 44
[11] Koike J, Ohyama R, Kobayashi T, et al.Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K[J]. Mater. Trans., 2003, 44: 445.
[12] Chin G Y, Mammel W L.Competition among basal, prism, and pyramidal slip modes in hcp metals[J]. Metall. Mater. Trans., 1970, 1B: 357
[13] Agnew S R, Yoo M H, Tomé C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Mater., 2001, 49: 4277
[14] Barnett M R.A taylor model based description of the proof stress of magnesium AZ31 during hot working[J]. Metall. Mater. Trans., 2003, 34A: 1799
[15] Del Valle J A, Pérez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Mater. Sci. Eng., 2003, A355: 68
[16] Chapuis A, Driver J H.Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J]. Acta Mater., 2011, 59: 1986
[17] Jiang L, Jonas J J, Luo A A, et al.Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures[J]. Scr. Mater., 2006, 54: 771
[18] Korla R, Chokshi A H.Strain-rate sensitivity and microstructural evolution in a Mg-Al-Zn alloy[J]. Scr. Mater., 2010, 63: 913
[19] Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915
[20] Kada S R.Deformation of magnesium alloys during laboratory scale in-situ X-ray diffraction [D]. VIC, Australia: Deakin University, 2013
[21] Mao P L, Liu Z, Wang C Y.Texture effect on high strain rates tension and compression deformation behavior of extruded AM30 alloy[J]. Mater. Sci. Eng., 2012, A539: 13
[22] Wu L, Agnew S R, Brown D W, et al.Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A[J]. Acta Mater., 2008, 56: 3699
[23] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[24] Jiang L, Jonas J J, Luo A A, et al. Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302
[25] Yoo M H, Lee J K.Deformation twinning in h.c.p. metals and alloys[J]. Philos. Mag., 1991, 63A: 987
[26] Yoo M H.Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metall. Trans., 1981, 12A: 409
[27] Wan G, Wu B L, Zhao Y H, et al.Strain-rate sensitivity of textured Mg-3.0Al-1.0Zn alloy (AZ31) under impact deformation[J]. Scr. Mater., 2011, 65: 461
[28] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
[29] Jiang J, Godfrey A, Liu W, et al.Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy[J]. Scr. Mater., 2008, 58: 122
[1] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[2] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[3] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[4] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[5] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[6] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[7] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[8] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[9] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[11] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[12] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[13] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[14] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[15] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.