Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 25-32    DOI: 10.11900/0412.1961.2015.00200
  本期目录 | 过刊浏览 |
高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*
刘恭涛,杨平(),毛卫民
北京科技大学材料科学与工程学院, 北京 100083
EFFECT OF FINAL ANNEALING ATMOSPHERE ON SECONDARY RECRYSTALLIZATION BEHAVIOR IN THIN GAUGE MEDIUM TEMPERATURE GRAIN ORIENTED SILICON STEEL
Gongtao LIU,Ping YANG(),Weimin MAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
Gongtao LIU, Ping YANG, Weimin MAO. EFFECT OF FINAL ANNEALING ATMOSPHERE ON SECONDARY RECRYSTALLIZATION BEHAVIOR IN THIN GAUGE MEDIUM TEMPERATURE GRAIN ORIENTED SILICON STEEL[J]. Acta Metall Sin, 2016, 52(1): 25-32.

全文: PDF(5298 KB)   HTML
摘要: 

通过调整最终退火保护气氛来控制0.18 mm厚含Cu中温取向硅钢二次再结晶时抑制剂的熟化和分解行为, 从而达到提高二次再结晶后Goss织构锋锐度和磁性能的目的. 运用EBSD系统观察和分析二次再结晶中断抽出试样的组织和取向. 结果表明: 提高高温退火气氛中的N2比例至90%, 最终0.18 mm规格成品磁感达1.95 T. 成品减薄后样品中抑制剂的粗化行为受气氛的影响更为强烈, 表现在提高N2比例后初次晶粒尺寸减小, 二次再结晶持续时间延长, 此时Goss取向晶粒拥有足够的时间发生异常长大以获得尺寸优势, 从而抑制偏转Goss取向晶粒的异常长大, 提高了Goss织构的锋锐度和薄规格成品的最终磁性能.

关键词 取向硅钢薄规格二次再结晶织构EBSD    
Abstract

The development trend of grain oriented silicon steel is reducing the slab reheating temperature and the thickness of final product. Medium temperature slab reheating grain oriented silicon steel bearing copper was characterized by omitting hot band annealing and larger range of secondary cold rolling reduction which was suitable for the preparation of thin gauge product. But less research were reported about thin gauge grain oriented silicon steel produced by medium temperature reheat technique. It was well known that the sharpness of secondary recrystallization Goss texture is deteriorated by the preparation of 0.18 mm thin gauge grain oriented silicon steel, poor secondary recrystallization and deviated Goss grains occurs by the influence of Goss seeds decreasing and inhibitor decrease. So the key point of producing thin gauge grain oriented silicon steel was controlling the precipitations ageing behavior. In order to improve the sharpness of Goss texture and the magnetic flux density after secondary recrystallization, secondary recrystallization behavior was controlled by annealing atmosphere in this work. The microstructure and texture of interrupted annealing specimens were measured by EBSD system. The results show that the magnetic flux density of 0.18 mm gauge specimen was 1.95 T after final annealing in 90%N2 atmosphere. Due to the coarsening behavior of inhibitors was more strongly influenced by atmosphere in thin gauge silicon steel, the primary recrystallization grain size was smaller and secondary recrystallization duration was longer by improving volume fraction of N2 during final annealing. In this condition, deviated Goss grains were inhibited while Goss grains have enough time for abnormal growth. As a result, sharp Goss texture and stable secondary recrystallization were guaranteed and high magnetic flux density of thin gauge final product was obtained.

Key wordsgrain oriented silicon steel    thin gauge    secondary recrystallization    texture    EBSD
收稿日期: 2015-04-07     
基金资助:国家高技术研究发展计划资助项目2012AA03A505
图1  二次再结晶退火工艺
Volume ratio P1.7 / (Wkg-1) B8 / T
N2∶H2=1∶3 2.07 1.51
N2∶H2=1∶1 1.08 1.40
N2∶H2=9∶1 1.66 1.95
表1  不同气氛下试样的磁性能
图2  热轧及中间脱C退火试样的EBSD取向成像图
图3  不同气氛下中断退火抽出试样的EBSD取向成像图
图4  不同气氛下退火20 h后最终试样的宏观晶粒组织和二次再结晶晶粒取向
图5  不同气氛下中断退火试样的二次再结晶晶粒取向
图6  不同气氛下中断退火试样的初次晶粒平均尺寸和{111}织构面积分数随保温时间的变化
图7  1050 ℃不同气氛下各试样的第二相分布
图8  二次再结晶过程不同取向晶粒择优长大示意图
[1] Goss N P. US Pat, 1965559, 1934
[2] Chen N, Zaefferer S, Lahn L, Gunther K, Raabe D. Acta Mater, 2003; 51: 1755
[3] Kubota T, Fujikura M, Ushigami Y. J Magn Magn Mater, 2000; 215-216: 69
[4] Choi G S, Lee C S, Woo J S, Hong B D. US Pat, 5653821, 1997
[5] Liu Z Z, Kuwabara M, Iwata Y. ISIJ Int, 2007; 47: 1672
[6] Mishra S, Kumar V. Mater Sci Eng, 1995; B32: 177
[7] Nicolas B, Chris X, Tom V D P, Montserrat G, Stephane G. Mater Charact, 2013; 86: 116
[8] Sakai T, Shimazu T, Chikuma K, Tanino M, Matsuo M, Tetsu Hagané, 1984; 15: 2049
[9] He Z Z,Zhao Y,Luo H W. Electric Steel. Beijing: Metallurgical Industry Press, 2012: 496
[9] (何忠治,赵 宇,罗海文.电工钢. 北京: 冶金工业出版社, 2012: 496)
[10] Nakashima S, Takashima K, Harase J. J Jpn Inst Met, 1991; 55: 898
[11] Nakashima S, Takashima K, Harase J, Kuroki K. J Jpn Inst Met, 1991; 55: 1392
[12] Ushigami Y, Kumano T, Haratani T, Nakamura S, Takebayashi S, Kubota T. Mater Sci Forum, 2004; 467-470: 853
[13] Yoshitomi Y, Ushigami Y, Harase J, Nakayama T, Masui H, Takahashi N. Mater Sci Forum, 1993; 113-115: 715
[14] Takamiya T, Kurosawa M, Komatsubara M. J Magn Magn Mater, 2003; 254-255: 334
[15] Nichol T J, Shilling J W. IEEE Trans Magn, 1976; 12: 858
[16] Lobanov M L. Steel Transl, 2015; 45: 94
[17] Yan M Q, Qian H, Yang P, Song H J, Shao Y Y, Mao W M. Acta Metall Sin, 2012; 48: 16
[17] (颜孟奇, 钱 浩, 杨 平, 宋惠军, 邵媛媛, 毛卫民. 金属学报, 2012; 48: 16)
[18] Kim J K, Lee D N, Koo Y M. Mater Lett, 2014; 122: 110
[19] Yan M Q, Qian H, Yang P, Mao W M, Jian Q W, Jin W X. J Mater Sci Technol, 2011; 27: 1065
[20] Harase J, Shimizu R. J Magn Magn Mater, 2000; 215-216: 89
[21] Kumano T, Haratani T, Ushigami Y. ISIJ Int, 2003; 43: 400
[22] Yoshitomi Y, Ushigami Y, Harase J, Nakayama T, Masui H, Takahashi N. Acta Metall Mater, 1994; 42: 2593
[23] Kumano T, Ushigami Y. ISIJ Int, 2007; 47: 890
[24] Lin P, Palumbo G, Harase J, Aust K T. Acta Mater, 1996; 44: 4677
[25] Shibayanagi T, Ichimiya K, Umakoshi Y. Sci Technol Adv Mater, 2000; 1: 87
[26] Park J Y, Han K S, Woo J S, Chang S K, Rajmohan N, Szpunar J A. Acta Mater, 2002; 50: 1825
[27] Fortunati S, Abbruzzese G. Mater Sci Forum, 1996; 204-206: 565
[28] Yoshitomi Y, Iwayama K, Nagashima T, Harase J, Masui H, Takahashi N. Mater Sci Forum, 1993; 113-115: 281
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[7] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 杜子杰, 李文渊, 刘建荣, 锁红波, 王清江. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报, 2020, 56(12): 1667-1680.