Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 129-136    DOI: 10.11900/0412.1961.2019.00209
  研究论文 本期目录 | 过刊浏览 |
NM500耐磨钢拉伸过程中TiN的破碎机制
吴翔,左秀荣(),赵威威,王中洋
郑州大学材料物理教育部重点实验室 郑州 450052
Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel
WU Xiang,ZUO Xiurong(),ZHAO Weiwei,WANG Zhongyang
Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
全文: PDF(16758 KB)   HTML
摘要: 

采用SEM、EDS、TEM和EBSD技术结合热力学理论计算研究了NM500耐磨钢中微米级TiN的析出规律、破碎机制,以及基体对破碎机制的影响。结果表明,NM500钢拉伸断裂机制为混合模式,断口面微米级TiN存在2种破碎形貌:TiN处于断口表面,自身处于撕裂脊上;TiN处于深韧窝底部。钢中Ti元素在高温液态析出,形成大量微米级TiN颗粒,在受拉应力作用时出现3种破碎机制:TiN内单条裂纹萌生并扩展至基体,TiN内单条裂纹萌生但在基体处止裂,TiN内萌生多条裂纹并在基体处止裂。NM500耐磨钢中存在高应变区与微米级TiN,且原奥氏体晶粒粗大,TiN上产生裂纹后,基体止裂能力较差,从而使裂纹极易在基体上延伸。当存在多个TiN团簇时,裂纹连成一片形成薄弱带,从而使钢的塑性变差。

关键词 NM500耐磨钢TiN破碎机制EBSD    
Abstract

Low-alloy high-strength martensitic wear-resistant steel has been widely used in the field of construction machinery due to its low cost and excellent mechanical properties. Microalloying elements, especially Ti, B and other elements, have been widely used to improve the performance of low carbon steel. However, addition of Ti will cause micron-sized Ti precipitates in the continuous casting process, causing cleavage fracture. Therefore, it is necessary to study the micron-sized TiN to reduce its influence on the toughness of the material. SEM, EDS, TEM and EBSD methods were combined with thermodynamic theory to study the precipitation rule of micron-sized TiN in NM500 wear-resistant steel, the fracture mechanism and the influence of matrix on the fracture mechanism. The results show that the tensile fracture mechanism of NM500 steel is mixed mode. There are two fracture morphology of micron-sized TiN on fracture surface: TiN is on the fracture surface, being on the tear ridge; TiN is at the bottom of a deep dimple. The Ti element in the steel precipitates at high temperature and forms a large number of micron-sized TiN. There are three kinds of fracture mechanisms in TiN when subjected to tensile stress: A single crack appears in TiN initiates and spreads to the matrix; A single crack appears in TiN initiates but stops at the matrix; A plurality of cracks are generated in the TiN, and the crack stops at the base, with the TiN shape being preserved intact. There are high strain zones and micron-sized TiN in NM500 steel, and the prior austenite grains are coarse. When the TiN cracks, the matrix has a poor ability to arrest the cracks, then the crack can extend on the substrate easily. When a plurality of TiN clusters are formed, the cracks are connected into one piece to be a weak band, leading to a poor plasticity to the steel.

Key wordsNM500 wear-resistant steel    TiN    broken mechanism    EBSD
收稿日期: 2019-06-27     
ZTFLH:  TG142.1  
基金资助:河南省科技开放合作项目(182106000016)
通讯作者: 左秀荣     E-mail: zuoxiurong@zzu.edu.cn
Corresponding author: Xiurong ZUO     E-mail: zuoxiurong@zzu.edu.cn
作者简介: 吴 翔,男,1995年生,硕士生

引用本文:

吴翔,左秀荣,赵威威,王中洋. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136.
Xiang WU, Xiurong ZUO, Weiwei ZHAO, Zhongyang WANG. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel. Acta Metall Sin, 2020, 56(2): 129-136.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00209      或      https://www.ams.org.cn/CN/Y2020/V56/I2/129

图1  NM500钢试样拉伸断口及夹杂物的SEM像
图2  NM500钢试样拉伸断口夹杂物的EDS分析
图3  NM500钢试样腐蚀后断口剖面及TiN夹杂的SEM像
图4  NM500钢试样未腐蚀断口剖面上TiN夹杂的SEM像
图5  NM500钢中纳米级TiN的TEM像
图6  热力学平衡状态下NM500钢中各相的质量分数及温度与奥氏体中Ti含量的关系
图7  NM500钢拉伸过程中大颗粒TiN受力变化示意图
图8  NM500钢在厚度1/4和厚度中心的局部取向差分布图及定量分析
图9  NM500钢在厚度1/4和厚度中心的质量图及取向差定量分析
[1] Ryabov V V, Kniaziuk T V, Mikhailov M S, et al. Structure and properties of new wear-resistant steels for agricultural machine building [J]. Inorg. Mater. Appl. Res., 2017, 8: 827
[2] Ojala N, Valtonen K, Heino V, et al. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels [J]. Wear, 2014, 317: 225
[3] Jiang Z Q, Fu H G, Yin E S, et al. Investigation and application of high strength low alloy wear resistant cast steel [J]. Mater. Technol., 2011, 26: 58
[4] Rendón J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods [J]. Wear, 2009, 267: 2055
[5] Jha A K, Prasad B K, Modi O P, et al. Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel [J]. Wear, 2003, 254: 120
[6] Nikitin V N, Nastich S Y, Smirnov L A, et al. Economically alloyed high-strength steel for use in mine equipment [J]. Steel Trans., 2016, 46: 742
[7] Shi C B, Liu W J, Li J, et al. Effect of boron on the hot ductility of low-carbon Nb-Ti-microalloyed steel [J]. Mater. Trans., 2016, 57: 647
[8] Mu W Z, J?nsson P G, Shibata H, et al. Inclusion and microstructure characteristics in steels with TiN additions [J]. Steel Res. Int., 2016, 87: 339
[9] Jin Y L, Du S L. Precipitation behaviour and control of TiN inclusions in rail steels [J]. Ironmak. Steelmak., 2018, 45: 224
[10] Fu J W, Qiu W X, Nie Q Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel [J]. J. Alloys Compd., 2017, 699: 938
[11] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels [J]. Metall. Mater. Trans., 2006, 37A: 2147
[12] Chen K, Du D H, Lu H, et al. Effect of TiN inclusion on fatigue crack growth behavior of alloy 690 tube [J]. Rare Met. Mater. Eng., 2018, 47: 1180
[12] (陈 凯, 杜东海, 陆 辉等. TiN夹杂物对690合金传热管疲劳裂纹扩展行为的影响 [J]. 稀有金属材料与工程, 2018, 47: 1180)
[13] Hulka K, Kern A, Schriever U. Application of niobium in quenched and tempered high-strength steels [J]. Mater. Sci. Forum, 2005, 500-501: 519
[14] Singh U P, Popli A M, Jain D K, et al. Influence of microalloying on mechanical and metallurgical properties of wear resistant coach and wagon wheel steel [J]. J. Mater. Eng. Perform., 2003, 12: 573
[15] Xie Z J, Shang C J, Wang X L, et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering [J]. Mater. Sci. Eng., 2018, A727: 200
[16] Pandey C, Saini N, Mahapatra M M, et al. Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes [J]. Eng. Failure Anal., 2017, 71: 131
[17] Nohava J, Hau?ild P, Karlík M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Mater. Charact., 2002, 49: 211
[18] Kang Y, Mao W M, Chen Y J, et al. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel [J]. Mater. Sci. Eng., 2016, A677: 211
[19] Prikryl M, Kroupa A, Weatherly G C, et al. Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel [J]. Metall. Mater. Trans., 1996, 27A: 1149
[20] Fairchild D P, Howden D G, Clark W A T. The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage [J]. Metall. Mater. Trans., 2000, 31A: 641
[21] Inoue K, Ohnuma I, Ohtani H, et al. Solubility product of TiN in austenite [J]. ISIJ Int., 1998, 38: 991
[22] Guo W Y, Hu X Q, Ma X P, et al. Effect of TiN precipitates on solidification microstructure of medium carbon Cr-Mo wear resistant steel [J]. Acta Metall. Sin., 2016, 52: 769
[22] (郭文营, 胡小强, 马晓平等. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响 [J]. 金属学报, 2016, 52: 769)
[23] Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel [J]. Acta Metall. Sin., 2011, 47: 1046
[23] (兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性 [J]. 金属学报, 2011, 47: 1046)
[24] Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
[25] Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
[26] Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
[1] 牛建钢, 肖伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳[J]. 金属学报, 2019, 55(2): 267-273.
[2] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[3] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[4] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[5] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[6] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[7] 王菲,王恩刚,贾鹏,王韬,邓安元. 电磁连铸对Incoloy800H合金铸坯内TiN分布和内裂纹的影响[J]. 金属学报, 2017, 53(1): 97-106.
[8] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[9] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[10] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[11] 刘恭涛,杨平,毛卫民. 高温退火气氛对薄规格中温取向硅钢二次再结晶行为的影响*[J]. 金属学报, 2016, 52(1): 25-32.
[12] 汪炳叔,邓丽萍,CHAPUIS Adrien,郭宁,李强. AZ31镁合金在平面应变压缩过程中的孪生行为研究*[J]. 金属学报, 2015, 51(12): 1441-1448.
[13] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[14] 戴启雷, 梁志芳, 吴建军, 孟立春, 史清宇. Al-Mg-Si合金搅拌摩擦焊接头DSC测试过程中组织变化及能量释放分析*[J]. 金属学报, 2014, 50(5): 587-593.
[15] 黄洪涛,Godfrey Andrew,刘伟,付宝勤,刘庆. 多向压缩中AZ31镁合金变形行为的EBSD跟踪研究[J]. 金属学报, 2013, 49(8): 932-938.