Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 192-200    DOI: 10.11900/0412.1961.2016.00247
  本期目录 | 过刊浏览 |
低压交流电脉冲下Al-7%Si合金晶粒细化机理研究
李宁1,张蓉1,张利民1,邢辉1,殷鹏飞2,吴耀燕1
1 西北工业大学理学院空间应用物理与化学教育部重点实验室 西安 710072
2 四川农业大学理学院 雅安 625014
Study on Grain Refinement Mechanism of Hypoeutectic Al-7%Si Alloy Under Low Voltage Alternating Current Pulse
Ning LI1,Rong ZHANG1,Limin ZHANG1,Hui XING1,Pengfei YIN2,Yaoyan WU1
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
2 College of Science, Sichuan Agricultural University, Ya'an 625014, China
引用本文:

李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
Ning LI, Rong ZHANG, Limin ZHANG, Hui XING, Pengfei YIN, Yaoyan WU. Study on Grain Refinement Mechanism of Hypoeutectic Al-7%Si Alloy Under Low Voltage Alternating Current Pulse[J]. Acta Metall Sin, 2017, 53(2): 192-200.

全文: PDF(9883 KB)   HTML
  
摘要: 

采用不同凝固阶段施加低压交流电脉冲以及在模具中嵌入不同直径金属网限制熔体对流的方法,研究了低压交流电脉冲细化Al-7%Si合金宏观凝固组织的机理。结果表明,低压交流电脉冲处理620 ℃以上的过热熔体以及在α-Al初生相生长后半阶段施加电脉冲均不会细化合金晶粒,晶粒细化主要发生在α-Al初生相形核阶段和生长前半阶段。金属网内外晶粒均得到了细化,但网外晶粒更细小,且网内微观组织为发达的树枝晶,网外为蔷薇状组织。低压交流电脉冲孕育效应及Joule热效应不会对Al-7%Si合金晶粒细化产生明显影响,合金晶粒细化主要是电磁力诱导的熔体流动引起晶核增殖和脉冲电流作用下形核动力学改变而引起形核率增加协同作用的结果。

关键词 Al-Si合金低压交流电脉冲晶粒细化宏观组织微观组织    
Abstract

The grain refinement mechanism of hypoeutectic Al-7%Si alloy under low voltage alternating current pulse (LACP) has been investigated in this work. In which LACP generated by the homemade low voltage modulation pulse generator is imposed in different solidification stages of the alloy and the wire mesh tubes of different diameters which have the effect of limiting the melt convection is embedded in sand mould. The experimental results show that the grains of casting alloy are evenly refined under LACP. The grain refinement will not appear, when LACP is imposed in the stages which are the alloy melt temperature is above 620 ℃ and late stages of crystal growth of primary phase. The grain refinement mainly occurs in nucleation stage and early growth stage of primary phase. The grains of inside and outside of wire mesh tube are refined together under LACP. But the grains of outside of wire mesh tube are much finer. The solidification microstructure of outside of wire mesh tube changes from large dendritic crystal to rose-shape crystal, nevertheless, it is still large dendritic crystal inside of wire mesh tube. Inocu lation effect and Joule heat effect of LACP have little effect on grain refinement of Al-7%Si alloy. The main reasons of grain refinement are the embryos fell off from chilling walls under LACP and the nucleation kinetics of the alloy was changed by LACP, which cause the nucleation rate of alloy increased. In addition, the α-dendrites became fragmentation under the forced melt flow which was induced by electromagnetic force can also lead to the grain refinement during the early growth stage of primary phase.

Key wordsAl-Si alloy    low voltage alternating current pulse    grain refinement    macrostructure    microstructure
收稿日期: 2016-06-21     
基金资助:中央高校基本科研业务费专项资金项目Nos.GEKY1008和3102015ZY078,陕西省自然科学基金项目No.2015JQ5125和西北工业大学基础研究基金项目No.JC201272
图1  实验铸型示意图
图2  Al-7%Si合金不同凝固阶段施加电脉冲示意图
图3  未经低压交流电脉冲处理的Al-7%Si合金宏观凝固组织的OM像
图4  Al-7%Si合金不同凝固阶段经230 A/cm2低压交流电脉冲处理后的宏观凝固组织的OM像
图5  Al-7%Si合金等轴晶粒平均粒径与230 A/cm2低压交流电脉冲作用阶段的关系
图6  Al-7%Si合金内置直径为15和8 mm的金属纱网经低压交流电脉冲处理后的宏观凝固组织的OM像
图7  低压交流电脉冲作用下单位体积元熔体所受到的电磁力
图8  内置有直径8 mm金属纱网的Al-7%Si合金经低压交流电脉冲处理前后的微观凝固组织的OM像
[1] Chen Z W, He Z, Jie W Q.Effect of Al-5Ti refiner and Al-10Sr modifier on microstructure and mechanical properties of A357 alloy[J]. Foundry, 2005, 54: 129
[1] (陈忠伟, 何志, 介万奇. Al-5Ti细化剂和Al-10Sr变质剂对A357合金微观组织和力学性能的影响[J]. 铸造, 2005, 54: 129)
[2] Kumari S S S, Pillai R M, Pai B C. Structure and properties of calcium and strontium treated Al-7Si-0.3Mg alloy: A comparison[J]. J. Alloys Compd., 2008, 460: 472
[3] Taghavi F, Saghafian H, Kharrazi Y H K. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy[J]. Mater. Des., 2009, 30: 115
[4] Gencalp S, Saklakoglu N.Effects of low-frequency mechanical vibration and casting temperatures on microstructure of semisolid AlSi8Cu3Fe alloy[J]. Arab. J. Sci. Eng., 2012, 37: 2255
[5] Zhang L Y, Zhou B D, Zhan Z J, et al.Mechanical properties of cast A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium[J]. Mater. Sci. Eng., 2007, A448: 361
[6] Wan D Q.In-situ fibrous Si phase formation in as-cast Al-7Si hypoeutectic alloy under the combined effects of rapid solidification and modification[J]. Rare Met. Mater. Eng., 2010, 39: 216
[7] Conrad H.Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid[J]. Mater. Sci. Eng., 2000, A287: 205
[8] Wang Q, Wang C J, Liu T, et al.Control of solidified structures in aluminum-silicon alloys by high magnetic fields[J]. J. Mater. Sci., 2007, 42: 10000
[9] Li X, Ren Z M, Fautrelle Y.Phase distribution and phase structure control through a high gradient magnetic field during the solidification process[J]. Mater. Des., 2008, 29: 1796
[10] Wang J, Li P J, He L J, et al.Influence of electromagnetic stirring on structure of A356 melt and its solidification behavior[J]. Chin. J. Nonferrous Met., 2009, 19: 2090
[10] (王晶, 李培杰, 何良菊等. 电磁搅拌对A356合金熔体结构及其凝固行为的影响[J]. 中国有色金属学报, 2009, 19: 2090)
[11] He S X, Wang J, Zhou Y H.Effect of high density pulse electric current on the solidification structure of low temperature melt of A356 aluminium alloy[J]. Acta Metall. Sin., 2002, 38: 479
[11] (何树先, 王俊, 周尧和. 高密度脉冲电流对A356铝合金低温熔体凝固组织的影响[J]. 金属学报, 2002, 38: 479)
[12] R?biger D, Zhang Y H, Galindo V, et al.The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
[13] Wang J Z, Qi J G, Du H L, et al.Effect of electric pulse modification on the solidification structure of pure aluminum[J]. Mater. Sci. Technol., 2008, 16: 646
[13] (王建中, 齐锦刚, 杜慧玲等. 电脉冲孕育处理对纯铝凝固组织的影响[J]. 材料科学与工艺, 2008, 16: 646)
[14] Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scr. Metall. Mater., 1995, 32: 879
[15] Wang T M, Xu J J, Xiao T Q, et al.Evolution of dendrite morphology of a binary alloy under an applied electric current: An in situ observation[J]. Phys. Rev., 2010, 81E: 042601
[16] Li J M, Li S L, Li J, et al.Modification of solidification structure by pulse electric discharging[J]. Scr. Metall. Mater., 1994, 31: 1691
[17] Ban C Y, Cui J Z, Ba Q X, et al.Solidification structures of LY12 Al-alloy under pulsed current and pulsed magnetic field[J]. Chin. J. Mater. Res., 2002, 16: 322
[17] (班春燕, 崔建忠, 巴启先等. 在脉冲电流或脉冲磁场作用下LY12合金的凝固组织[J]. 材料研究学报, 2002, 16: 322)
[18] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[19] Zhang L M, Liu H N, Li N, et al.The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse[J]. J. Mater. Res., 2016, 31: 396
[20] Zhang L M, Zhang R, Chen W J, et al. Effect of a novel low-voltage alternating current pulse on solidification structure of Al-7Si-0.52Mg alloy[D] [J]. Adv. Mater. Res., 2012, 482-484: 1431
[21] Brandt R, Neuer G.Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature[J]. Int. J. Thermophys., 2007, 28: 1429
[22] Sklyarchuk V, Plevachuk Y, Yakymovych A, et al.Structure sensitive properties of liquid Al-Si alloys[J]. Int. J. Thermophys., 2009, 30: 1400
[23] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[24] Liao X L, Zhai Q J, Song C J, et al.Effects of electric current pulse on stability of solid/liquid interface of Al-4.5wt.%Cu alloy during directional solidification[J]. Mater. Sci. Eng., 2007, A466: 56
[25] Zhu J, Wang T M, Cao F, et al.Real time observation of equiaxed growth of Sn-Pb alloy under an applied direct current by synchrotron microradiography[J]. Mater. Lett., 2012, 89: 137
[26] Hu H Q.The Principle of Metal Solidification [M]. Beijing: China Machine Press, 2007: 84
[26] (胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2007: 84)
[27] Qin R S, Zhou B L.Exploration on the fabrication of bulk nanocrystalline materials by direct-nanocrystallizing method II Theoretical calculation of grain size of metals solidified under electropulsing[J]. Chin. J. Mater. Res., 1997, 11: 69
[27] (秦荣山, 周本濂. 直接晶化法制备块状纳米材料的探索II脉冲电流作用下金属熔体结晶晶粒尺寸的理论估算[J]. 材料研究学报, 1997, 11: 69)
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.