|
|
铸造Mg-RE合金晶粒细化行为研究现状与展望 |
吴国华1,2, 童鑫1( ), 蒋锐1, 丁文江1,2 |
1.上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240 2.上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240 |
|
Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect |
WU Guohua1,2, TONG Xin1( ), JIANG Rui1, DING Wenjiang1,2 |
1.National Engineering Research Center of Light Alloys Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
Guohua WU,
Xin TONG,
Rui JIANG,
Wenjiang DING.
Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. Acta Metall Sin, 2022, 58(4): 385-399.
1 |
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys world wide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
|
2 |
Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
|
3 |
Xie J S, Zhang J H, You Z H, et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying [J]. J. Magnes. Alloy., 2021, 9: 41
|
4 |
Peng Q M, Dong H W, Wang L D, et al. Microstructure and mechanical property of Mg-8.31Gd-1.12Dy-0.38Zr alloy [J]. Mater. Sci. Eng., 2008, A477: 193
|
5 |
Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy [J]. J. Mater. Sci., 2009, 44: 4443
|
6 |
He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J]. J. Alloys Compd., 2007, 427: 316
|
7 |
Rong W, Wu Y J, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt. %) alloy [J]. Mater. Charact., 2017, 126: 1
|
8 |
Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy [J]. J. Alloys Compd., 2014, 615: 703
|
9 |
Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys [J]. Scr. Mater., 2009, 61: 636
|
10 |
Tong X, Wu G H, Zhang L, et al. Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg-Y-RE-Zr alloy by tungsten inert gas welding [J]. J. Magnes. Alloy., 2020, 10: 180
|
11 |
Tong X, Zhang G Q, Wu G H, et al. Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Charact., 2021, 176: 111125
|
12 |
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
|
13 |
Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0. 5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
|
14 |
Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
|
15 |
Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Metall. Mater. Trans., 1993, 24A: 481
|
16 |
Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
|
17 |
StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
|
18 |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
|
19 |
Zhang M X, Kelly P M, Easton M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model [J]. Acta Mater., 2005, 53: 1427
|
20 |
Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles [J]. Acta Mater., 2001, 49: 1867
|
21 |
Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
|
22 |
Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
|
22 |
孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
|
23 |
Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
|
24 |
Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
|
25 |
Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
|
26 |
Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
|
27 |
Qiu D, Zhang M X. The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg-10wt% Y Alloy [J]. J. Alloys Compd., 2014, 586: 39
|
28 |
Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
|
29 |
Sun M, Easton M A, Stjohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
|
30 |
Qiu D, Zhang M X. Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg-10wt.%Y cast alloy [J]. J. Alloys Compd., 2009, 488: 260
|
31 |
StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
|
32 |
StJohn D H, Ma Q, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
|
33 |
Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
|
34 |
Zhang D Y, Qiu D, Zhu S M, et al. Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy [J]. Scr. Mater., 2020, 183: 12
|
35 |
Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
|
36 |
Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
|
36 |
庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
|
37 |
Tian Q. Grain refining mechanism and influncing factors of Mg-RE-Zr alloys [D]. Harbin: Harbin Institute of Technology, 2011
|
37 |
田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
|
38 |
Qian M, StJohn D H. Grain nucleation and formation in Mg-Zr alloys [J]. Int. J. Cast Met. Res., 2009, 22: 256
|
39 |
Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
|
40 |
Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
|
41 |
Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
|
42 |
Qian M, StJohn D H, Frost M T, et al. Grain refinement of pure magnesium using rolled Zirmax master alloy (Mg-33.3Zr) [J]. Magnes. Technol., 2003, 2003: 215
|
43 |
Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
|
44 |
Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
|
45 |
Sun M, Wu G H, Dai J C, et al. Grain refinement behavior of potassium fluozirconate (K2ZrF6) salts mixture introduced into Mg-10Gd-3Y magnesium alloy [J]. J. Alloys Compd., 2010, 494: 426
|
46 |
Tong X, Wu G H, Zhang L, et al. Achieving low-temperature Zr alloying for microstructural refinement of sand-cast Mg-Gd-Y alloy by employing zirconium tetrachloride [J]. Mater. Charact., 2020, 171: 110727
|
47 |
Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
|
48 |
Wu G H, Tong X, Sui H M, et al. Research status and prospect of melt treatment of magnesium-rare earth alloy [J]. Foundry, 2021, 70: 1
|
48 |
吴国华, 童 鑫, 眭怀明 等. 镁稀土合金熔体处理研究现状与展望 [J]. 铸造, 2021, 70: 1
|
49 |
Dai J C, Easton M A, Zhang M X, et al. Effects of cooling rate and solute content on the grain refinement of Mg-Gd-Y alloys by aluminum [J]. Metall. Mater. Trans., 2014, 45A: 4665
|
50 |
Wang C L, Dai J C, Liu W C, et al. Effect of Al additions on grain refinement and mechanical properties of Mg-Sm alloys [J]. J. Alloys Compd., 2015, 620: 172
|
51 |
Jiang Z T, Jiang B, Zeng Y, et al. Role of Al modification on the microstructure and mechanical properties of as-cast Mg-6Ce alloys [J]. Mater. Sci. Eng., 2015, A645: 57
|
52 |
Chang H W, Qiu D, Taylor J A, et al. The role of Al2Y in grain refinement in Mg-Al-Y alloy system [J]. J. Magnes. Alloy., 2013, 1: 115
|
53 |
Dai J C. Study on the effects of Al and trace elements on grain refinement behavior, microstructure and mechanical properties of Mg-Gd(-Y) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014
|
53 |
戴吉春. Al及微量元素对Mg-Gd(-Y)合金晶粒细化行为、组织及力学性能影响的研究 [D]. 上海: 上海交通大学, 2014
|
54 |
Jiang Z T, Meng X, Jiang B, et al. Grain refinement of Mg-3Y alloy using Mg-10Al2Y master alloy [J]. J. Rare Earths, 2021, 39: 881
|
55 |
Tong X, You G Q, Luo J C, et al. Rapid cooling effect during solidification on macro- and micro-segregation of as-cast Mg-Gd alloy [J]. Prog. Nat. Sci., 2021, 31: 68
|
56 |
Tong X, You G Q, Yao F J, et al. Segregation behavior and its regulating process in as-cast magnesium alloy containing heavy rare earth [J]. J. Rare Earths, doi: 10.1016/j.jre.2021.08.009
|
57 |
Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates [J]. Corros. Sci., 2009, 51: 395
|
58 |
Fan Z, Wang Y, Xia M, et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing [J]. Acta Mater., 2009, 57: 4891
|
59 |
Peng G S, Wang Y, Fan Z. Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium [J]. Metall. Mater. Trans., 2018, 49A: 2182
|
60 |
Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
|
61 |
Chen X R, Jia Y H, Le Q C, et al. The interaction between in situ grain refiner and ultrasonic treatment and its influence on the mechanical properties of Mg-Sm-Al magnesium alloy [J]. J. Mater. Res. Technol., 2020, 9: 9262
|
62 |
Zhang L, Li Y L. Research progress on grain refining methods of magnesium alloy [J]. Foundry, 2019, 68: 1195
|
62 |
张 玲, 李英龙. 镁合金晶粒细化方法研究进展 [J]. 铸造, 2019, 68: 1195
|
63 |
Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo- and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
|
64 |
Atamanenko T V, Eskin D G, Zhang L, et al. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti [J]. Metall. Mater. Trans., 2010, 41A: 2056
|
65 |
Wang G, Wang Q, Easton M A, et al. Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium [J]. Sci. Rep., 2017, 7: 9729
|
66 |
Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
|
66 |
吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
|
67 |
Qiu Y F, Gao D M, Chen L, et al. Effects of pulsed electric current on solidification structure and mechanical properties of AZ91 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2007, 27: 633
|
67 |
丘永福, 高德民, 陈 磊 等. 脉冲电流对AZ91镁合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2007, 27: 633
|
68 |
Lan J, Yang Y, Li X. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
|
69 |
Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Aсtа Phys. Sin., 2000, 49: 1010
|
69 |
訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
|
70 |
Sterzel R, Dahlmann E, Langsdorf A, et al. Preparation of Zn-Mg-rare earth quasicrystals and related crystalline phases [J]. Mater. Sci. Eng., 2000, A294-296: 124
|
71 |
Misra A K. A novel solidification technique of metals and alloys: Under the influence of applied potential [J]. Metall. Trans., 1985, 16A: 1354
|
72 |
Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
|
72 |
汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
|
73 |
Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
|
74 |
Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
|
75 |
Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
|
75 |
胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
|
76 |
Wang L, Wang N, Provatas N. Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys [J]. Acta Mater., 2017, 126: 302
|
77 |
Sistaninia M, Terzi S, Phillion A B, et al. 3-D granular modeling and in situ X-ray tomographic imaging: A comparative study of hot tearing formation and semi-solid deformation in Al-Cu alloys [J]. Acta Mater., 2013, 61: 3831
|
78 |
Huang Y G. Study on the fluidity and hot tearing behavior of Mg-Gd-Y-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009
|
78 |
黄玉光. Mg-Gd-Y-Zr合金的热裂和流动性研究 [D]. 上海: 上海交通大学, 2009
|
79 |
Kamga K H, Larouche D, Bournane M, et al. Hot tearing of aluminum-copper B206 alloys with iron and silicon additions [J]. Mater. Sci. Eng., 2010, A527: 7413
|
80 |
Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
|
81 |
Liu J W, Kou S. Crack susceptibility of binary aluminum alloys during solidification [J]. Acta Mater., 2016, 110: 84
|
82 |
Hatami N, Babaei R, Dadashzadeh M, et al. Modeling of hot tearing formation during solidification [J]. J. Mater. Process. Technol., 2008, 205: 506
|
83 |
Li J l, Chen R S, Ma Y Q, et al. Characterization and prediction of microporosity defect in sand cast WE54 alloy castings [J]. J. Mater. Sci. Technol., 2014, 30: 991
|
84 |
Yin H, Liu Z L, Liu X Q, et al. Effects of Al addition on the microstructure and mechanical properties of Mg-4Y alloys [J]. Mater. Sci. Technol., 2017, 33: 2188
|
85 |
Dai J C, Zhu S M, Easton M A, et al. Heat treatment, microstructure and mechanical properties of a Mg-Gd-Y alloy grain-refined by Al additions [J]. Mater. Sci. Eng., 2013, A576: 298
|
86 |
Gao L, Chen R S, Han E H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys [J]. J. Alloys Compd., 2009, 481: 379
|
87 |
Li Y L, Wu G H, Chen A T, et al. Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg-Gd-Y-Zr magnesium alloys in the product form of a large structural casting [J]. J. Mater. Res., 2015, 30: 3461
|
88 |
Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
|
89 |
Song G L, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ [J]. J. Light Met., 2002, 2: 1
|
90 |
Zhang L L, Zhang J S, Zhao R, et al. Effect of microalloyed Al on microstructure and corrosion behaviors of as-cast Mg-Zn-Y-Mn alloys [J]. Adv. Eng. Mater., 2021, 23: 2000587
|
91 |
Wang L S, Jiang J H, Yuan T, et al. Recent progress on corrosion behavior and mechanism of Mg-RE based alloys with long period stacking ordered structure [J]. Met. Mater. Int., 2020, 26: 551
|
92 |
Wang L S, Jiang J H, Liu H, et al. Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures [J]. J. Magnes. Alloy., 2020, 8: 1208
|
93 |
Cao F Y, Zheng D J, Song G L, et al. The corrosion behavior of Mg5Y in nominally distilled water [J]. Adv. Eng. Mater., 2018, 20: 1700986
|
94 |
Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
|
95 |
Ben-Hamu G, Eliezer D, Shin K S, et al. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys [J]. J. Alloys Compd., 2007, 431: 269
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|