Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 385-399    DOI: 10.11900/0412.1961.2021.00519
  综述 本期目录 | 过刊浏览 |
铸造Mg-RE合金晶粒细化行为研究现状与展望
吴国华1,2, 童鑫1(), 蒋锐1, 丁文江1,2
1.上海交通大学 材料科学与工程学院 轻合金精密成型国家工程研究中心 上海 200240
2.上海交通大学 材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240
Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect
WU Guohua1,2, TONG Xin1(), JIANG Rui1, DING Wenjiang1,2
1.National Engineering Research Center of Light Alloys Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
Guohua WU, Xin TONG, Rui JIANG, Wenjiang DING. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. Acta Metall Sin, 2022, 58(4): 385-399.

全文: PDF(2405 KB)   HTML
摘要: 

轻质高强耐热的镁稀土(Mg-RE)合金大型复杂铸件在航空航天、国防军工装备轻量化等方面展现出独特的优势。对铸造Mg-RE合金进行晶粒细化处理能够显著改善合金的强度、塑韧性以及铸造工艺性能,对拓宽其应用领域意义重大。本文首先基于成分过冷和异质形核,探讨了稀土元素及外加颗粒对镁合金晶粒细化的影响。归纳了适用于铸造Mg-RE合金的化学、物理细化方法及其作用机制,并系统论述了晶粒细化对铸造Mg-RE合金铸造工艺性能、力学性能及腐蚀性能的影响。最后面向Mg-RE合金的实际应用需求,对其细化处理方面存在的不足和发展趋势进行了探讨。

关键词 Mg-RE合金晶粒细化理论模型凝固组织性能    
Abstract

Magnesium rare-earth (Mg-RE) alloy castings with a large size and complex structure exhibit versatile prospects in critical aircraft, aerospace, and defense fields owing to their ultralow density, excellent specific strength, and high-temperature resistance. The grain refinement of cast Mg-RE alloys can significantly improve their strength, plasticity, toughness, and casting performance, which are critical for expanding their applications. In this work, the grain refinement mechanism of Mg alloys by introducing RE elements and heterogeneous particles is first discussed based on the classical theory of constitutional supercooling and heterogeneous nucleation. Various grain refinement technologies for Mg-RE alloy casting using chemical and physical methods are comprehensively summarized. Further, the influence of grain refinement on the casting performance, mechanical properties, and corrosion properties of Mg-RE cast alloys is thoroughly discussed. Finally, the deficiencies and development trends of the current grain refinement of Mg-RE alloys are discussed from the point of actual application requirements.

Key wordsMg-RE alloy    grain refinement    theoretical model    solidification microstructure    property
收稿日期: 2021-11-30     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(U2037601);国家自然科学基金项目(51821001);国家自然科学基金项目(51775334);上海航天先进技术联合研究基金项目(USCAST-2020-31)
作者简介: 吴国华,男,1964年生,教授,博士
Elementm / (oC·%-1)kQ / oC
Nd-3.55703.557
Sm-3.40.1352.943
Pr-2.90902.909
La-2.89502.895
Yb-3.0980.1332.685
Eu-2.4902.49
Tb-2.990.3062.073
Ce-1.72501.725
Y-1.62401.624
Gd-2.5950.6051.025
Ho-2.1960.6080.86
Dy-2.3490.6470.828
Tm-1.580.6470.557
Er-2.1570.7570.524
Lu-0.680.820.123
表1  RE元素在镁合金中的液相线斜率(m)、溶质平衡分配系数(k)和生长限制因子(Q) (溶质元素浓度Ci = 1.0%,质量分数)[21]
图1  镁合金晶粒尺寸与RE元素Q的关系[22]
图2  Al2Y颗粒与α-Mg基体的位向关系[26]以及Al2RE/α-Mg之间的错配度与其相界面能的关系[27]
图3  含Zr镁合金中的Zr晕形貌[22]及Mg-10Gd-3Y-xZr合金晶粒尺寸与共晶相体积分数随Zr含量的变化[36]
图4  采用Zr和Al2Y细化处理的Mg-10Y合金的显微组织[26]
图5  Al2Y颗粒的微观形貌及其与α-Mg基体的位向关系[27]
图6  强力熔体剪切后的MgO颗粒形貌[59]及MgO/Mg界面处Zr吸附层[60]
图7  Al2Sm颗粒和超声处理对Mg-5Sm-xAl合金晶粒细化的贡献[61]
图8  加Zr细化处理前后的Mg-4.5Zn-0.4Y合金的组织及热裂倾向性[12]
1 Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys world wide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
2 Wu G H, Wang C L, Sun M, et al. Recent developments and applications on high-performance cast magnesium rare-earth alloys [J]. J. Magnes. Alloy., 2021, 9: 1
3 Xie J S, Zhang J H, You Z H, et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying [J]. J. Magnes. Alloy., 2021, 9: 41
4 Peng Q M, Dong H W, Wang L D, et al. Microstructure and mechanical property of Mg-8.31Gd-1.12Dy-0.38Zr alloy [J]. Mater. Sci. Eng., 2008, A477: 193
5 Gao L, Chen R S, Han E H. Microstructure and strengthening mechanisms of a cast Mg-1.48Gd-1.13Y-0.16Zr (at.%) alloy [J]. J. Mater. Sci., 2009, 44: 4443
6 He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J]. J. Alloys Compd., 2007, 427: 316
7 Rong W, Wu Y J, Zhang Y, et al. Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt. %) alloy [J]. Mater. Charact., 2017, 126: 1
8 Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy [J]. J. Alloys Compd., 2014, 615: 703
9 Yamada K, Hoshikawa H, Maki S, et al. Enhanced age-hardening and formation of plate precipitates in Mg-Gd-Ag alloys [J]. Scr. Mater., 2009, 61: 636
10 Tong X, Wu G H, Zhang L, et al. Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg-Y-RE-Zr alloy by tungsten inert gas welding [J]. J. Magnes. Alloy., 2020, 10: 180
11 Tong X, Zhang G Q, Wu G H, et al. Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy [J]. Mater. Charact., 2021, 176: 111125
12 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
13 Song J F, Wang Z, Huang Y D, et al. Effect of Zn addition on hot tearing behaviour of Mg-0. 5Ca-xZn alloys [J]. Mater. Des., 2015, 87: 157
14 Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
15 Johnsson M, Backerud L, Sigworth G K. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys [J]. Metall. Mater. Trans., 1993, 24A: 481
16 Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater., 2000, 48: 2823
17 StJohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
18 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
19 Zhang M X, Kelly P M, Easton M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model [J]. Acta Mater., 2005, 53: 1427
20 Easton M A, StJohn D H. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles [J]. Acta Mater., 2001, 49: 1867
21 Ali Y, Qiu D, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloys Compd., 2015, 619: 639
22 Sun M. Study on grain refinement behavior of Mg-Gd-Y magnesium alloy by zirconium [D]. Shanghai: Shanghai Jiao Tong University, 2012
22 孙 明. Mg-Gd-Y镁合金Zr晶粒细化行为研究 [D]. 上海: 上海交通大学, 2012
23 Turnbull D, Vonnegut B. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44: 1292
24 Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg-Al-Zn-Si alloys [J]. Mater. Lett., 2002, 56: 53
25 Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys [J]. Scr. Mater., 2005, 53: 517
26 Qiu D, Zhang M X, Taylor J A, et al. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Mater., 2009, 57: 3052
27 Qiu D, Zhang M X. The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg-10wt% Y Alloy [J]. J. Alloys Compd., 2014, 586: 39
28 Qian M. Heterogeneous nucleation on potent spherical substrates during solidification [J]. Acta Mater., 2007, 55: 943
29 Sun M, Easton M A, Stjohn D H, et al. Grain refinement of magnesium alloys by Mg-Zr master alloys: The role of alloy chemistry and Zr particle number density [J]. Adv. Eng. Mater., 2013, 15: 373
30 Qiu D, Zhang M X. Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg-10wt.%Y cast alloy [J]. J. Alloys Compd., 2009, 488: 260
31 StJohn D H, Easton M A, Qian M, et al. Grain refinement of magnesium alloys: A review of recent research, theoretical developments, and their application [J]. Metall. Mater. Trans., 2013, 44A: 2935
32 StJohn D H, Ma Q, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
33 Qian M, Das A. Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains [J]. Scr. Mater., 2006, 54: 881
34 Zhang D Y, Qiu D, Zhu S M, et al. Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy [J]. Scr. Mater., 2020, 183: 12
35 Emley E F. Principles of Magnesium Technology [M]. Oxford: Pergamon Press, 1966: 126
36 Pang S. Study on solidification behavior and grain refining mechanism of sand-cast Mg-Gd-Y alloys [D]. Shanghai: Shanghai Jiao Tong University, 2015
36 庞 松. 砂型铸造Mg-Gd-Y合金凝固行为与晶粒细化机制研究 [D]. 上海: 上海交通大学, 2015
37 Tian Q. Grain refining mechanism and influncing factors of Mg-RE-Zr alloys [D]. Harbin: Harbin Institute of Technology, 2011
37 田 倩. Mg-RE-Zr合金的细化机理及影响因素的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011
38 Qian M, StJohn D H. Grain nucleation and formation in Mg-Zr alloys [J]. Int. J. Cast Met. Res., 2009, 22: 256
39 Sun M, Wu G H, Wang W, et al. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy [J]. Mater. Sci. Eng., 2009, A523: 145
40 Qian M, Zheng L, Graham D, et al. Settling of undissolved zirconium particles in pure magnesium melts [J]. J. Light Met., 2001, 1: 157
41 Qian M, Hildebrand Z C G, StJohn D H. The loss of dissolved zirconium in zirconium-refined magnesium alloys after remelting [J]. Metall. Mater. Trans., 2009, 40A: 2470
42 Qian M, StJohn D H, Frost M T, et al. Grain refinement of pure magnesium using rolled Zirmax master alloy (Mg-33.3Zr) [J]. Magnes. Technol., 2003, 2003: 215
43 Wang C Q, Sun M, Zheng F Y, et al. Improvement in grain refinement efficiency of Mg-Zr master alloy for magnesium alloy by friction stir processing [J]. J. Magnes. Alloy., 2014, 2: 239
44 Viswanathan S, Saha P, Foley D, et al. Engineering a more efficient zirconium grain refiner for magnesium [A]. Magnesium Technology 2011 [M]. Cham: Springer, 2011: 559
45 Sun M, Wu G H, Dai J C, et al. Grain refinement behavior of potassium fluozirconate (K2ZrF6) salts mixture introduced into Mg-10Gd-3Y magnesium alloy [J]. J. Alloys Compd., 2010, 494: 426
46 Tong X, Wu G H, Zhang L, et al. Achieving low-temperature Zr alloying for microstructural refinement of sand-cast Mg-Gd-Y alloy by employing zirconium tetrachloride [J]. Mater. Charact., 2020, 171: 110727
47 Tong X, You G Q, Wang Y C, et al. Effect of ultrasonic treatment on segregation and mechanical properties of as-cast Mg-Gd binary alloys [J]. Mater. Sci. Eng., 2018, A731: 44
48 Wu G H, Tong X, Sui H M, et al. Research status and prospect of melt treatment of magnesium-rare earth alloy [J]. Foundry, 2021, 70: 1
48 吴国华, 童 鑫, 眭怀明 等. 镁稀土合金熔体处理研究现状与展望 [J]. 铸造, 2021, 70: 1
49 Dai J C, Easton M A, Zhang M X, et al. Effects of cooling rate and solute content on the grain refinement of Mg-Gd-Y alloys by aluminum [J]. Metall. Mater. Trans., 2014, 45A: 4665
50 Wang C L, Dai J C, Liu W C, et al. Effect of Al additions on grain refinement and mechanical properties of Mg-Sm alloys [J]. J. Alloys Compd., 2015, 620: 172
51 Jiang Z T, Jiang B, Zeng Y, et al. Role of Al modification on the microstructure and mechanical properties of as-cast Mg-6Ce alloys [J]. Mater. Sci. Eng., 2015, A645: 57
52 Chang H W, Qiu D, Taylor J A, et al. The role of Al2Y in grain refinement in Mg-Al-Y alloy system [J]. J. Magnes. Alloy., 2013, 1: 115
53 Dai J C. Study on the effects of Al and trace elements on grain refinement behavior, microstructure and mechanical properties of Mg-Gd(-Y) alloys [D]. Shanghai: Shanghai Jiao Tong University, 2014
53 戴吉春. Al及微量元素对Mg-Gd(-Y)合金晶粒细化行为、组织及力学性能影响的研究 [D]. 上海: 上海交通大学, 2014
54 Jiang Z T, Meng X, Jiang B, et al. Grain refinement of Mg-3Y alloy using Mg-10Al2Y master alloy [J]. J. Rare Earths, 2021, 39: 881
55 Tong X, You G Q, Luo J C, et al. Rapid cooling effect during solidification on macro- and micro-segregation of as-cast Mg-Gd alloy [J]. Prog. Nat. Sci., 2021, 31: 68
56 Tong X, You G Q, Yao F J, et al. Segregation behavior and its regulating process in as-cast magnesium alloy containing heavy rare earth [J]. J. Rare Earths, doi: 10.1016/j.jre.2021.08.009
57 Izumi S, Yamasaki M, Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates [J]. Corros. Sci., 2009, 51: 395
58 Fan Z, Wang Y, Xia M, et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing [J]. Acta Mater., 2009, 57: 4891
59 Peng G S, Wang Y, Fan Z. Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium [J]. Metall. Mater. Trans., 2018, 49A: 2182
60 Peng G S, Wang Y, Chen K H, et al. Improved Zr grain refining efficiency for commercial purity Mg via intensive melt shearing [J]. Int. J. Cast Met. Res., 2017, 30: 374
61 Chen X R, Jia Y H, Le Q C, et al. The interaction between in situ grain refiner and ultrasonic treatment and its influence on the mechanical properties of Mg-Sm-Al magnesium alloy [J]. J. Mater. Res. Technol., 2020, 9: 9262
62 Zhang L, Li Y L. Research progress on grain refining methods of magnesium alloy [J]. Foundry, 2019, 68: 1195
62 张 玲, 李英龙. 镁合金晶粒细化方法研究进展 [J]. 铸造, 2019, 68: 1195
63 Nagasivamuni B, Wang G, StJohn D H, et al. Effect of ultrasonic treatment on the alloying and grain refinement efficiency of a Mg-Zr master alloy added to magnesium at hypo- and hyper-peritectic compositions [J]. J. Cryst. Growth, 2019, 512: 20
64 Atamanenko T V, Eskin D G, Zhang L, et al. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti [J]. Metall. Mater. Trans., 2010, 41A: 2056
65 Wang G, Wang Q, Easton M A, et al. Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium [J]. Sci. Rep., 2017, 7: 9729
66 Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
66 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
67 Qiu Y F, Gao D M, Chen L, et al. Effects of pulsed electric current on solidification structure and mechanical properties of AZ91 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2007, 27: 633
67 丘永福, 高德民, 陈 磊 等. 脉冲电流对AZ91镁合金凝固组织和力学性能的影响 [J]. 特种铸造及有色合金, 2007, 27: 633
68 Lan J, Yang Y, Li X. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
69 Zi B T, Ba Q X, Cui J Z, et al. Effect of strong pulsed electromagnetic field on metal's solidified structure [J]. Aсtа Phys. Sin., 2000, 49: 1010
69 訾炳涛, 巴启先, 崔建忠 等. 强脉冲电磁场对金属凝固组织影响的研究 [J]. 物理学报, 2000, 49: 1010
70 Sterzel R, Dahlmann E, Langsdorf A, et al. Preparation of Zn-Mg-rare earth quasicrystals and related crystalline phases [J]. Mater. Sci. Eng., 2000, A294-296: 124
71 Misra A K. A novel solidification technique of metals and alloys: Under the influence of applied potential [J]. Metall. Trans., 1985, 16A: 1354
72 Wang B, Yang Y S, Zhou J X, et al. Effect of the pulsed magnetic field on the solidification and mechanical properties of Mg-Gd-Y-Zr alloy [J]. Rare Met. Mater. Eng., 2009, 38: 519
72 汪 彬, 杨院生, 周吉学 等. 脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 519
73 Zhang L, Zhou W, Hu P H, et al. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field [J]. J. Alloys Compd., 2016, 688: 868
74 Chang Z Y, Wu Y J, Heng X W, et al. Characterization of microstructure and nanoscale phase in Mg-15Gd-1Zn (wt.%) alloy fabricated by rotating magnetic field casting [J]. Mater. Charact., 2020, 170: 110660
75 Hu S P, Chen L P, Zhou Q, et al. Research progress in effects of physical fields on solidified structure of metals [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 717
75 胡世平, 陈乐平, 周 全 等. 物理场对金属凝固组织影响的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 717
76 Wang L, Wang N, Provatas N. Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys [J]. Acta Mater., 2017, 126: 302
77 Sistaninia M, Terzi S, Phillion A B, et al. 3-D granular modeling and in situ X-ray tomographic imaging: A comparative study of hot tearing formation and semi-solid deformation in Al-Cu alloys [J]. Acta Mater., 2013, 61: 3831
78 Huang Y G. Study on the fluidity and hot tearing behavior of Mg-Gd-Y-Zr alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009
78 黄玉光. Mg-Gd-Y-Zr合金的热裂和流动性研究 [D]. 上海: 上海交通大学, 2009
79 Kamga K H, Larouche D, Bournane M, et al. Hot tearing of aluminum-copper B206 alloys with iron and silicon additions [J]. Mater. Sci. Eng., 2010, A527: 7413
80 Lin S, Aliravci C, Pekguleryuz M O. Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining [J]. Metall. Mater. Trans., 2007, 38A: 1056
81 Liu J W, Kou S. Crack susceptibility of binary aluminum alloys during solidification [J]. Acta Mater., 2016, 110: 84
82 Hatami N, Babaei R, Dadashzadeh M, et al. Modeling of hot tearing formation during solidification [J]. J. Mater. Process. Technol., 2008, 205: 506
83 Li J l, Chen R S, Ma Y Q, et al. Characterization and prediction of microporosity defect in sand cast WE54 alloy castings [J]. J. Mater. Sci. Technol., 2014, 30: 991
84 Yin H, Liu Z L, Liu X Q, et al. Effects of Al addition on the microstructure and mechanical properties of Mg-4Y alloys [J]. Mater. Sci. Technol., 2017, 33: 2188
85 Dai J C, Zhu S M, Easton M A, et al. Heat treatment, microstructure and mechanical properties of a Mg-Gd-Y alloy grain-refined by Al additions [J]. Mater. Sci. Eng., 2013, A576: 298
86 Gao L, Chen R S, Han E H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys [J]. J. Alloys Compd., 2009, 481: 379
87 Li Y L, Wu G H, Chen A T, et al. Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg-Gd-Y-Zr magnesium alloys in the product form of a large structural casting [J]. J. Mater. Res., 2015, 30: 3461
88 Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
89 Song G L, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ [J]. J. Light Met., 2002, 2: 1
90 Zhang L L, Zhang J S, Zhao R, et al. Effect of microalloyed Al on microstructure and corrosion behaviors of as-cast Mg-Zn-Y-Mn alloys [J]. Adv. Eng. Mater., 2021, 23: 2000587
91 Wang L S, Jiang J H, Yuan T, et al. Recent progress on corrosion behavior and mechanism of Mg-RE based alloys with long period stacking ordered structure [J]. Met. Mater. Int., 2020, 26: 551
92 Wang L S, Jiang J H, Liu H, et al. Microstructure characterization and corrosion behavior of Mg-Y-Zn alloys with different long period stacking ordered structures [J]. J. Magnes. Alloy., 2020, 8: 1208
93 Cao F Y, Zheng D J, Song G L, et al. The corrosion behavior of Mg5Y in nominally distilled water [J]. Adv. Eng. Mater., 2018, 20: 1700986
94 Qian M, StJohn D H, Frost M T. Effect of soluble and insoluble zirconium on the grain refinement of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 593
95 Ben-Hamu G, Eliezer D, Shin K S, et al. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys [J]. J. Alloys Compd., 2007, 431: 269
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[15] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.