|
|
强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究 |
闫亚琼,罗晋如( ),张济山,庄林忠 |
北京科技大学新金属材料国家重点实验室 北京 100083 |
|
Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling |
Yaqiong YAN,Jinru LUO( ),Jishan ZHANG,Linzhong ZHUANG |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
Yaqiong YAN,
Jinru LUO,
Jishan ZHANG,
Linzhong ZHUANG.
Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling[J]. Acta Metall Sin, 2017, 53(1): 107-113.
[1] | Easton M, Beer A, Barnett M, et al.Magnesium alloy applications in automotive structures[J]. JOM, 2008, 60(11): 57 | [2] | Mordike B L, Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37 | [3] | Bamberger M, Dehm G.Trends in the development of new Mg alloys[J]. Annu. Rev. Mater. Res., 2008, 38: 505 | [4] | Chino Y, Kimura K, Hakamada M, et al.Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Mater. Sci. Eng., 2008, A485: 311 | [5] | Al-Samman T.Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy[J]. Acta Mater., 2009, 57: 2229 | [6] | Chino Y, Kimura K, Mabuchi M.Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets[J]. Acta Mater., 2009, 57: 1476 | [7] | Jiang L, Jonas J J, Luo A A, et al.[J]. Mater. Sci. Eng., 2007, A445-446: 302 | [8] | Yi S, Bohlen J, Heinemann F, et al.Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets[J]. Acta Mater., 2010, 58: 592 | [9] | Wang Y N, Huang J C.The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Mater., 2007, 55: 897 | [10] | Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093 | [11] | Lv F, Yang F, Duan Q Q, et al.Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation[J]. Int. J. Fatigue, 2011, 33: 672 | [12] | Huang X S, Suzuki K, Chino Y.Influences of initial texture on microstructure and stretch formability of Mg-3Al-1Zn alloy sheet obtained by a combination of high temperature and subsequent warm rolling[J]. Scr. Mater., 2010, 63: 395 | [13] | Luo J R, Godfrey A, Liu W, et al.Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling[J]. Acta Mater., 2012, 60: 1986 | [14] | Lee Y B, Shin D H, Park K T, et al.Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scr. Mater., 2004, 51: 355 | [15] | Rangaraju N, Raghuram T, Krishna B V, et al.Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminium[J]. Mater. Sci. Eng., 2005, A398: 246 | [16] | Lee T R, Chang C P, Kao P W.The tensile behavior and deformation microstructure of cryo-rolled and annealed pure nickel[J]. Mater. Sci. Eng., 2005, A408: 131 | [17] | Nagarjuna S, Babu U C, Ghosal P.Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy[J]. Mater. Sci. Eng., 2008, A491: 331 | [18] | Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912 | [19] | Al-Samman T, Gottstein G.Influence of strain path change on the rolling behavior of twin roll cast magnesium alloy[J]. Scr. Mater., 2008, 59: 760 | [20] | Beausir B, Biswas S, Kim D I, et al.Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling[J]. Acta Mater., 2009, 57: 5061 | [21] | Pérez-Prado M T, del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy[J]. Scr. Mater., 2004, 50: 661 | [22] | Liu Q.Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 46: 1458 | [22] | (刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46: 1458) | [23] | Chapuis A, Driver J H.Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J]. Acta Mater., 2011, 59: 1986 | [24] | Hutchinson W B, Barnett M R.Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals[J]. Scr. Mater., 2010, 63: 737 | [25] | Luo J R, Liu Q, Liu W, et al.[J]. Acta Metall. Sin., 2012, 48: 717 | [25] | (罗晋如, 刘庆, 刘伟等. [J]. 金属学报, 2012, 48: 717) | [26] | Luo J R, Liu Q, Liu W, et al.[J]. Acta Metall. Sin., 2011, 47: 1567 | [26] | (罗晋如, 刘庆, 刘伟等. [J]. 金属学报, 2011, 47: 1567) | [27] | Yoshinaga H, Obara T, Morozumi S.Twinning deformation in magnesium compressed along the c-axis[J]. Mater. Sci. Eng., 1973, 12: 255 | [28] | Read-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium[J]. Acta Metall., 1957, 5: 717 | [29] | Luo J R, Chen X P, Xin R L, et al.Comparison of microstructure and properties of AZ31 Mg alloy sheet produced through different routes[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: s194 | [30] | Barnett M R.Twinning and the ductility of magnesium alloys: Part I: “Tension” twins[J]. Mater. Sci. Eng., 2007, A464: 1 | [31] | Barnett M R.Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins[J]. Mater. Sci. Eng., 2007, A464: 8 | [32] | Jiang J, Godfrey A, Liu W, et al.Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy[J]. Scr. Mater., 2008, 58: 122 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|