Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1400-1406    DOI: 10.11900/0412.1961.2015.00113
  本期目录 | 过刊浏览 |
预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响*
顾媛,陈江华,刘春辉(),朱东晖,刘力梅,陶冠辉
EFFECT OF PRE-DEFORMATION ON AGE- HARDENING AND MICROSTRUCTURE IN Al-Mg-Si-Cu ALLOY
Yuan GU,Jianghua CHEN,Chunhui LIU(),Donghui ZHU,Limei LIU,Guanhui TAO
College of Materials Science and Engineering, Hunan University, Changsha 410082
引用本文:

顾媛,陈江华,刘春辉,朱东晖,刘力梅,陶冠辉. 预变形对Al-Mg-Si-Cu合金时效硬化和显微结构的影响*[J]. 金属学报, 2015, 51(11): 1400-1406.
Yuan GU, Jianghua CHEN, Chunhui LIU, Donghui ZHU, Limei LIU, Guanhui TAO. EFFECT OF PRE-DEFORMATION ON AGE- HARDENING AND MICROSTRUCTURE IN Al-Mg-Si-Cu ALLOY[J]. Acta Metall Sin, 2015, 51(11): 1400-1406.

全文: PDF(1751 KB)   HTML
摘要: 

采用显微硬度测试、拉伸实验、EBSD和TEM等检测手段研究了不同变形量对形变和时效结合制备的Al-Mg-Si-Cu合金力学性能和显微结构的影响. 结果表明, 随着变形量的增加, 轧制态合金的硬度会逐渐增加, 后续时效过程中形变合金均能进一步强化但时效硬化能力逐渐下降; 晶粒沿着轧制方向逐渐被拉长为层状结构, 形成大量亚晶界. 变形量小时, 合金内位错密度随着形变量的增加而增加; 变形量较大时, 位错发生缠结并形成亚晶. 形变导致的位错组态变化显著影响合金的析出特性, 析出相逐渐从离散分布演变为连续分布, 连续分布的析出相是溶质原子析出与缺陷退化交互作用的结果, 通过调整形变量和时效工艺有助于制备强度和塑性结合良好的铝合金.

关键词 铝合金形变时效位错析出相    
Abstract

The 6××× series aluminum alloys Al-Mg-Si-Cu are widely used in the transportation and building industries due to their comprehensive mechanical properties, adequate formability, high corrosion resistance and good weldability. For decades, ultrafine grain structure (UFG) produced by severe plastic deformation (SPD) has been proved to be a promising way in strengthening Al alloy materials. Although this method can guarantee a great improvement in strength, the obtained ductility is always disappointing. Besides, this method has a limitation to fabricate products suitable for practical use. Recently, combining deformation and aging has been proposed to produce high-strength Al alloys. This strategy is very effective in achieving Al alloys with strength-ductility synergy even through conventional producing process, for example, rolling and aging. The strain ratio of deformation is critical in tuning the mechanical properties which could be acquired by the above method. The effect of deformation strain ratio on the age-hardening behaviors and microstructure in Al-Mg-Si-Cu alloy produced by combining cold-rolling and aging are investigated using hardness test, tensile test, EBSD and TEM in this work. The results show that the as-rolled hardness increases gradually with deformation strain ratio. The age-hardening potential declines with the increase of strain ratio, though post-aging could further strengthen the as-rolled alloys. The grains elongate along the rolling direction during deformation and finally have a lamellar structure. Fragmentation and extensive defects like sub-grain boundaries occurs inside the grains. The dislocations become denser inside the alloy with the increase of the deformation ratio. When the deformation ratio is large (above 60%), formation of dislocation tangling and sub-grains are observed. Deformation-induced change of the dislocation configuration affects the precipitation significantly. Due to the interaction between solutes precipitation and defects annihilation, the distribution of precipitates undergoes a change from being isolated to a continuous manner.

Key wordsaluminum alloy    deformation    aging    dislocation    precipitation
    
基金资助:*国家自然科学基金项目51171063 和11427806 及国家重点基础研究发展计划项目2009CB623704 资助
图1  不同变形量的Al-Mg-Si-Cu合金在不同温度下的时效硬化曲线
图2  不同温度时效时Al-Mg-Si-Cu合金的拉伸性能
图3  不同变形量Al-Mg-Si-Cu合金轧制态的EBSD图
图4  不同变形量Al-Mg-Si-Cu合金150 ℃峰值时效不同时间的TEM明场像
图5  不同变形量Al-Mg-Si-Cu合金在150 ℃ 峰值时效后析出相的TEM暗场像
图6  不同变形量的Al-Mg-Si-Cu合金150 ℃峰值时效下析出相的HRTEM像
[1] Williams J C, Starke Jr E A. Acta Mater, 2003; 51: 5775
[2] Chen J H, Costan E, Van Huis M A, Xu Q, Zandbergen H W. Science, 2006; 312: 416
[3] Sabirov I, Murashkin Yu M, Valiev R Z. Mater Sci Eng, 2013; A560: 1
[4] Nageswara P, Jayaganthan R. Mater Des, 2012; 39: 226
[5] Zhang J W, Gao N, Starink M J. Mater Sci Eng, 2010; A527: 3472
[6] Wang Y M, Ma E. Acta Mater, 2004; 52: 1699
[7] Kang U G, Lee H J, Nam W J. J Mater Sci, 2012; 47: 7883
[8] Chen Y T, Wang D A, Uan J Y, Hsieh T H, Tsai T C. Mater Sci Eng, 2012; A551: 296
[9] Estrin Y, Vinogradov A. Acta Mater, 2013; 61: 782
[10] Liddicoat P V, Liao X Z, Zhao Y H, Zhu Y T, Murashkin M Y, Lavernia E J, Valiev R Z, Ringer S P. Nat Commun, 2010; 1: 1
[11] Cavaliere P. Inter J Fatigue, 2009; 31: 1476
[12] Yao Z Y, Liu Q, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 647 (姚宗勇, 刘 庆, Godfrey A, 刘 伟. 金属学报, 2009; 45: 647)
[13] Eizadjou M, Manesh H D, Janghorban K. J Alloys Compd, 2009; 474: 406
[14] Zhao Y L, Yang Z Q, Zhang Z. Acta Mater, 2013; 61: 1624
[15] Djavanroodi F, Ebrahimi M, Rajabifar B, Akramizadeh S. Mater Sci Eng, 2010; A528: 745
[16] Rangaraju N, Raghuram T, Krishna V, Prasad R K, Venugopal P. Mater Sci Eng, 2005; A398: 246
[17] Cheng S, Zhao Y H, Zhu Y T, Ma E. Acta Mater, 2007; 55: 5822
[18] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Adv Mater, 2006; 18: 2280
[19] Vaseghi M, Kim H S. Mater Des, 2012; 36: 735
[20] Liu C H, Li X L, Wang S H, Chen J H, Teng Q, Chen J, Gu Y. Mater Des, 2014; 54: 144
[21] Wang S H, Liu C H, Chen J H, Li X L, Zhu D H, Tao G H. Mater Sci Eng, 2013; A585: 233
[22] Engler O. Mater Sci Eng, 2012; A538: 69
[23] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[24] Chen J H, Liu C H. Trans Nonferrous Met Soc China, 2011; 21: 2352 (陈江华, 刘春辉. 中国有色金属学报, 2011; 21: 2352)
[25] Li X L, Chen J H, Liu C H, Feng J N, Wang S H. Acta Metall Sin, 2013; 49: 243 (李祥亮, 陈江华, 刘春辉, 冯佳妮, 王时豪, 金属学报, 2013; 49: 243)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[8] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[9] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[12] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[13] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[14] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.