Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 223-229    DOI: 10.11900/0412.1961.2014.00380
  本期目录 | 过刊浏览 |
渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*
薛滢妤(), 唐建成(), 卓海鸥, 叶楠, 吴桐, 周旭升
南昌大学材料科学与工程学院, 南昌 330031
MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE
XUE Yingyu(), TANG Jiancheng(), ZHUO Haiou, YE Nan, WU Tong, ZHOU Xusheng
School of Materials Science and Engineering, Nanchang University, Nanchang 330031
引用本文:

薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
Yingyu XUE, Jiancheng TANG, Haiou ZHUO, Nan YE, Tong WU, Xusheng ZHOU. MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE[J]. Acta Metall Sin, 2015, 51(2): 223-229.

全文: PDF(5282 KB)   HTML
摘要: 

以共晶铸铁 (eutectic cast iron, ECI) 作为C源, 通过熔铸时渗碳体的原位生成及渗碳体石墨化工艺制备石墨黄铜. 利用SEM和EDS分析石墨黄铜的显微组织, 探讨了显微组织与力学性能和切削性能的关系. 结果表明: 铸造过程中原位生成的渗碳体通过石墨化退火后分解成石墨颗粒均匀弥散地分布于黄铜基体上, 颗粒尺寸为3~6 μm, 铸铁添加量为7%时石墨颗粒出现偏聚. 随着铸铁添加量的增加, 基体组织不断细化, 抗拉强度和显微硬度增加, 伸长率降低; 随着石墨体积分数的增大, 石墨黄铜的切屑形貌得到不断改善. 当铸铁添加量为5%时黄铜的切屑形貌最好, 为短片状和C型, 其切削性能与铅黄铜HPb59-1相当。

关键词 石墨黄铜渗碳体石墨化显微组织切削性能    
Abstract

Graphite is believed to be an attractive candidate substituting for lead to produce free-cutting brasses, because of its lubricating property and the role in chip breaking. The major hindrances of developing graphite-brass are the large density difference and nonwetting characteristic between graphite and copper. In this work, eutectic cast iron (ECI) was added into brasses instead of other form of carbon source. Cementite particles were in situ formed during casting, then annealing treatment was conducted to facilitate the graphitization of cementite particles, and finally uniformly dispersed graphite particles with the size of 3~6 mm were obtained in brass alloys. SEM and EDS observation indicate that the microstructures of the graphite-brass are refined with the cast iron content increased from 1% to 7%. The tensile strength and microhardness are increased, and the chip morphologies are improved gradually with the cast iron content increased from 1% to 7%. However, the graphite brass with 7% addition shows suboptimal chip morphologies because of the segregation of graphite particles. The chips of graphite brasses with 5% addition are desired, which are short and discontinuous. Its tensile strength, elongation and Vickers hardness are 502.00 MPa, 22.6% and 148.9 HV, respectively. The graphite brass shows comparable machinability to conventional lead brass HPb59-1。

Key wordsgraphite-brass    graphitization of cementite    microstructure    machinability
收稿日期: 2014-07-10     
ZTFLH:  TG146.1  
基金资助:*国家自然科学基金项目51471083, 51271090和51364036资助
作者简介: null

薛滢妤, 女, 1991年生, 硕士生

图 1  铸铁添加量为5%的铸态和退火态黄铜的SEM像及EDS谱
图2  石墨黄铜凝固和退火过程示意图
图 3  铸铁添加量分别为1%, 3%, 5%和7%的退火态石墨黄铜的SEM像
图4  不同铸铁添加量的退火态石墨黄铜中的石墨粒度分布
ECI / % sb / MPa s0.2 / MPa d / % Hardness / HV
1 432.36 212.07 27.5 134.5
3 468.66 238.60 22.7 140.7
5 502.00 249.00 19.2 148.9
7 543.31 276.38 16.8 168.3
HPb59-1[27] ≥440 ≥10
表1  不同铸铁添加量的退火态石墨黄铜和铅黄铜HPb59-1的力学性能
图 5  铸铁添加量分别为1%, 3%, 5%和7%的退火态石墨黄铜的切屑形貌
[1] Kuyucak S, Sahoo M. Can Metall Quart, 1996; 35: 1
[2] Huang J S, Peng C Q, Zhang S Q, Huang B Y. Chin J Nonferrous Met, 2006; 16: 1486
[2] (黄劲松, 彭超群, 章四琪, 黄伯云. 中国有色金属学报, 2006; 16: 1486)
[3] EI-Sherif R M, Ismail K M, Badawy W A. Electrochim Acta, 2004; 49: 5139
[4] Nakano A, Higashiiriki K, Rochman N T. J Jpn Inst Met, 2005; 69: 198
[5] Fontaine A L, Keast V J. Mater Charact, 2006; 57: 424
[6] Vilarinho C, Davim J P, Soares D, Castro F. J Mater Process Technol, 2005; 170: 441
[7] Jang Y, Kim S, Han S. Metall Mater Trans, 2005; 36: 1060
[8] Xiao L R, Shu X P, Yi D Q, Zhang L H, Qin J L, Hu J R. J Cent South Univ (Sci Technol), 2009; 40: 117
[8] (肖来荣, 舒学鹏, 易丹青, 张路怀, 覃静丽, 胡加瑞. 中南大学学报(自然科学版), 2009; 40: 117)
[9] Peters D T. Mod Cast, 1997; 87: 57
[10] Zhang M, Zhang S Q, Cai J H, Lou H R, Xie X. US Pat, 0289094, 2006
[11] Taha M A, E-Mahallawy N A, Mousa T M, Hamouda R M, Yousef A F A G. Mater Wiss Werkst, 2012; 40: 699
[12] Xu C K, Hu Z Q, Zhang S Q. US Pat, 8273193, 2010
[13] Oishi K. US Pat, 6413330, 2002
[14] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W. Phys Rev Lett, 2004; 92: 126101
[15] Nath D, Gupta A K, Rohatgi P K. J Mater Sci Lett, 1997; 16: 1595
[16] Kim J K, Rohatgi P K, Choi J O. Met Mater Int, 2005; 11: 333
[17] Imai H, Kosaka Y, Kojima A, Li S F, Kondoh K, Umeda J, Atumi H. Powder Technol, 2010; 198: 417
[18] Rohatgi P K, Nath D, Kim J K. Corros Sci, 2000; 42: 1553
[19] Rohatgi P K, Ray S, Church N. AFS Trans, 1992; 100: 1
[20] Rohatgi P K, Nath D, Ray S. AFS Trans, 1993; 104: 49
[21] Huang J S, Zhou Z C. Chin Pat, 10030662, 2008
[21] (黄劲松, 周忠诚. 中国专利, 10030662, 2008)
[22] Huang J S, Zhou Z C. Chin Pat, 10030409, 2008
[22] (黄劲松, 周忠诚. 中国专利, 10030409, 2008)
[23] Song J M, Lui T S, Chen L H, Kuo B C. Metall Mater Trans, 2000; 31A: 275
[24] Johnson W, Mehl R. Trans AIME, 1939; 135: 461
[25] Avrami M. J Chem Phys, 1940; 8: 212
[26] Dai F P, Cao C D, Wei B B. Sci China, 2007; 50G: 509
[27] Trent E M, Wright P K. Metal Cutting. 4th Ed, Woburn: Butterworth-Heinemann, 2000: 23
[28] Garcia P, Rivera S, Palacios M, Belzunce J. Eng Fail Anal, 2010; 17: 771
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.