Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 230-238    DOI: 10.11900/0412.1961.2014.00288
  本期目录 | 过刊浏览 |
Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*
莫文林1,2, 张旭1, 陆善平1,2(), 李殿中1, 李依依1
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2 中国科学院核用材料与安全评价重点实验室, 沈阳 110016
EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL
MO Wenlin1,2, ZHANG Xu1, LU Shanping1,2(), LI Dianzhong1, LI Yiyi1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.
Wenlin MO, Xu ZHANG, Shanping LU, Dianzhong LI, Yiyi LI. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL[J]. Acta Metall Sin, 2015, 51(2): 230-238.

全文: PDF(11389 KB)   HTML
摘要: 

采用相图计算、焊材设计、焊材制备、现场焊接和焊缝金属解剖的方法, 研究Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响. 结果表明, 随焊缝金属中Nb含量增加, 焊缝金属晶内MX (M=Nb, Ti, X=C, N)析出相增加, 晶界M23C6(M=Cr, Fe)的初始析出温度降低, 晶界M23C6析出相减少, 且M23C6由多列连续分布转变为单列离散分布; 焊缝金属中的高温失延裂纹(ductility-dip-cracking, DDC)的数量和尺寸减少; 焊缝金属的强度、塑性和弯曲性能显著提高。

关键词 NiCrFe-7焊缝金属失延裂纹NbM23C6MX力学性能    
Abstract

Ni-based filler metal is one of the most important filler metals in building the key components of nuclear power plants, however, ductility-dip-cracking (DDC) and inclusion defects form easily in the weldment and need to be repaired afterward. The precipitation of M23C6 (M=Cr, Fe) at grain boundaries will promote the nucleation and propagation of DDC. Adding Ti can form Ti(C, N) and reduce M23C6 precipitate at grain boundaries, which reduces DDC in the weld metal. However, the increase of Ti content in filler metal will cause the inclusion defects. Nb replacing part of Ti in Ni-based filler metal is proposed in this work. The reduction of Ti in filler metal is to reduce the sensitivity of inclusion defects in the weld metal. Nb can form MX (M=Nb, Ti, X=C, N) precipitates to reduce the M23C6 and DDC in weld metal. The effect of Nb on the size, number, and location of MX and M23C6 in Ni-based weldment has been investigated systematically in this work. Phase diagram calculations show that Nb is an element forming high temperature MX precipitate, and its affinity with oxygen is poor and not easy to form oxide. According to the phase diagram calculations, five different filler metals are designed and made with 0, 0.4%, 0.7%, 0.85%, 1.1%Nb content. The results show that the intragranular precipitates are distributed along sub grain boundaries. The intragranular precipitate for the Nb-free weld metal is Ti(C, N), whereas the intragranular precipitate in the Nb-bearing weld metals is MX. For the increased Nb in weld metals, more MX is produced, and more C is fixed within the grain. As the Nb content increased in weld metals, the initial precipitation temperature of M23C6 decreases, the intergranular M23C6 precipitate decreases and M23C6 turns discreted at grain boundaries. As Nb content increases in weld metals, the total crack length of DDC decreases. When the Nb content is over 0.85%, little DDC is found in the weld metals. The addition of Nb can improve the tensile strength, plasticity and bending property of the weld metals。

Key wordsNiCrFe-7 weld metal    ductility-dip-cracking    Nb    M23C6    MX    mechanical property
收稿日期: 2014-05-29     
ZTFLH:  TG422.3  
基金资助:* 国家自然科学基金项目51474203和中国科学院重点部署项目KGZD-EW-XXX-2资助
图1  NiCrFe-7合金二维垂直截面相图
图2  Nb含量对NiCrFe-7合金平衡析出相的影响
Sample Nb Al Ti C Si Fe Cr Ni
0Nb <0.02 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.4Nb 0.30~0.50 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.7Nb 0.60~0.80 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.85Nb 0.80~0.95 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
1.1Nb 1.00~1.20 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
表1  焊丝合金成分的设计
图3  焊接接头示意图
图4  0Nb焊缝金属形貌
图5  0Nb和1.1Nb焊缝金属晶内析出相的SEM像和EDS分析
图6  不同Nb含量焊缝金属晶内析出相数量统计
图7  不同Nb含量焊缝金属晶界M23C6析出相的SEM像和TEM像
图8  0Nb焊缝金属中的高温失延裂纹(DDC)形貌
图9  不同Nb含量焊缝金属横截面的DDC总长度统计
图10  不同Nb含量焊缝金属的拉伸实验曲线
图11  不同Nb含量焊缝金属室温拉伸断口形貌
图12  不同Nb含量焊缝金属正弯的表面形貌
  
[1] Nissley N E, Lippold J C. Weld J, 2003; 82(12): 355s
[2] Torres E A, Peternella F G, Caram R, Ramírez A. In: Kannengiesser J T, Babu S S, Komizo Y, Ramirez A J eds., In-situ Studies with Photons, Neutrons and Electrons Scattering. Berlin, Heidelberg: Springer, 2010: 27
[3] Unfried J S, Torres E A, Ramirez A J. In: Böllinghaus T, Lippold J C, Cross C E eds., Hot Cracking Phenomena in Welds III. Berlin, Heidelberg: Springer, 2011: 295
[4] Wu W, Chen P Y, Jiang H. Welding, 2009; (2): 61
[4] (吴伟, 陈佩寅, 姜胡, 焊接, 2009; (2): 61)
[5] Nishimoto K, Saida K, Okauchi H, Ohta K. Sci Technol Weld Joining, 2006; 11: 471
[6] Saida K, Nomoto Y, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2012; 17(1): 1
[7] Saida K, Taniguchi A, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2011; 16: 553
[8] Capobianco T E, Hanson M E. Auger Spectroscopy Results from Ductility Tip Cracks Opened Under Ultra-high Vacuum. Niskayuna, NY: Knolls Atomic Power Laboratory (KAPL), 2005: No. LM-05K074
[9] Lee D J, Kim Y S, Shin Y T, Jeon E C, Lee S H, Lee H J, Lee S K, Lee J H, Lee H W. Met Mater Int, 2010; 16: 813
[10] Kujanpaa V P, David S A, White C L. Weld J, 1986; 65(8): S203
[11] Ramirez A J, Lippold J C. In: Böllinghaus T, Herold H eds., Hot Cracking Phenomena in Welds. Berlin, Heidelberg: Springer, 2005: 19
[12] Ramirez A J, Garzon C M. In: Böllinghaus T, Herold H, Cross C J, Lippold J eds., Hot Cracking Phenomena in Welds II. Berlin, Heidelberg: Springer, 2008: 427
[13] Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 259
[14] Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 245
[15] Nissley N E, Lippold J C. Proc of the 7th Int Conf on Trends in Welding Research, Georgia: ASM International, 2006: 327
[16] Collins M G, Ramirez A J, Lippold J C. Weld J, 2004; 83(2): 39s
[17] Young G A, Capobianco T E, Penik M A, Morris B W, McGee J J. Weld J, 2008; 87(2): 31s
[18] Noecker F F, DuPont J N. Weld J, 2009; 88(3): 62s
[19] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[20] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[21] Mo W, Lu S, Li D, Li Y. Metall Mater Trans, 2014; 45A: 5114
[22] Murata Y, Suga K, Yukawa N. J Mater Sci, 1986; 21: 3653
[23] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[24] Lee H T, Jeng S L, Yen C H, Kuo T Y. J Nucl Mater, 2004; 335: 59
[25] Tang Z Z. Master Thesis, China Academy of Machinery Science Technology, Harbin, 2007
[25] (唐正柱. 机械科学研究总院硕士学位论文, 哈尔滨, 2007)
[26] Qin R, Duan Z, He G. Metall Mater Trans, 2013; 44A: 4661
[27] Pan N, Song B, Zhai Q J, Wen B. J Univ Sci Technol Beijing, 2010; 32: 179
[27] (潘 宁, 宋 波, 翟启杰, 文 彬. 北京科技大学学报, 2010; 32: 179)
[28] Wu D, Lu S P, Wang X, Dong W C. Acta Metall Sin, 2014; 50: 313
[28] (吴 栋, 陆善平, 王 鑫, 董文超. 金属学报, 2014; 50: 313)
[29] Li S, Chen B, Ma Y C, Gao M, Liu K. Acta Metall Sin, 2011; 47: 816
[29] (李 硕, 陈 波, 马颖澈, 高 明, 刘 奎. 金属学报, 2011; 47: 816)
[30] Li H, Xia S, Zhou B X, Ni J S, Chen W J. Acta Metall Sin, 2009; 45: 195
[30] (李 慧, 夏 爽, 周邦新, 倪建森, 陈文觉. 金属学报, 2009; 45: 195)
[31] Zheng L, Zhang M C, Dong J X. Rare Met Mater Eng, 2012; 41: 983
[31] (郑 磊, 张麦仓, 董建新. 稀有金属材料与工程, 2012; 41: 983)
[32] Venkiteswaran P, Bright M, Taplin D. Mater Sci Eng, 1973; A11: 255
[33] Collins M G, Lippold J C. Weld J, 2003; 82(10): 288s
[34] Collins M G, Ramirez A J, Lippold J C. Weld J, 2003; 82(12): 348s
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.