Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 633-640    DOI: 10.3724/SP.J.1037.2013.00585
  本期目录 | 过刊浏览 |
高性能再生硬质合金的短流程回收制备*
王瑶, 刘雪梅, 宋晓艳(), 魏崇斌 王海滨, 王西龙
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室, 北京100124
SHORT-TERM PROCESS OF RECYCLING CEMENTED CARBIDE SCRAPS AND PREPARATION OF HIGH PERFORMANCE HARD METALS
WANG Yao, LIU Xuemei, SONG Xiaoyan(), WEI Chongbin, WANG Haibin, WANG Xilong
Key Laboratory of Advanced Functional Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
引用本文:

王瑶, 刘雪梅, 宋晓艳, 魏崇斌 王海滨, 王西龙. 高性能再生硬质合金的短流程回收制备*[J]. 金属学报, 2014, 50(5): 633-640.
Yao WANG, Xuemei LIU, Xiaoyan SONG, Chongbin WEI, Haibin WANG, Xilong WANG. SHORT-TERM PROCESS OF RECYCLING CEMENTED CARBIDE SCRAPS AND PREPARATION OF HIGH PERFORMANCE HARD METALS[J]. Acta Metall Sin, 2014, 50(5): 633-640.

全文: PDF(9750 KB)   HTML
摘要: 

以WC-16%Co (质量分数)废旧硬质合金块体为原料, 采用氧化-原位还原碳化的方法对其进行回收制备再生WC-16%Co复合粉, 并对再生复合粉进行低压烧结制备再生硬质合金块体材料. 通过热力学计算确定氧化物粉末和炭黑发生原位还原碳化反应的温度范围, 采用实验方法系统研究了原料粉末中配C量对再生复合粉和再生硬质合金的物相组成、力学性能等的影响, 并对再生合金的显微组织与性能的关系进行了分析. 结果表明: 随着原料粉中配C量的增加, 再生复合粉中的Co6W6C相逐渐减少, 总C和游离C含量增加; 当配C量为16.60%时, 可制备出化学成分符合原生WC-16%Co复合粉要求的再生复合粉, 经低压烧结可得到物相纯净, 断裂韧性达到23.05 MPa·m1/2, 横向断裂强度达到4020 MPa的高性能再生硬质合金; 再生硬质合金的Co相分布是否均匀, 对再生硬质合金的综合性能优良与否起到至关重要的作用.

关键词 废旧硬质合金回收配C量WC-Co复合粉力学性能    
Abstract

Recycling of cemented carbide scraps is drawing more and more attention to companies and countries all over the world. However, the recycling method has always been a problem where there are many factors involved. The feasibility, recycling rate, energy consumption and the environment conservation are all significant factors for the recycling method that need to be considered. In this work, using the cemented carbides scraps as the raw material, the recycled WC-16%Co (mass fraction) composite powder was synthesized by oxidation, reduction and carbonization reactions. Then the recycled composite powder was sintered to prepare the hard metal bulks by sinter-HIP (hot isostatic pressing). The results indicate that with the carbon addition increases, the content of Co6W6C in the composite powders decreases while the total carbon and free carbon increase. When the carbon addition is 16.60%, the high-performance hard metal bulks can be obtained, with a fracture toughness of 23.05 MPa·m1/2 and a transverse rupture strength of 4020 MPa. Moreover, the Co phase distributes more homogeneously in the recycled hard metals. The larger mean free path of the Co phase and the lower contiguity degree of the WC grains lead to the high performance of the recycled hard metal materials.

Key wordsrecycling of the cemented carbides scrap    carbon addition    WC-Co composite powder    mechanical property
    
ZTFLH:  TG146  
基金资助:*国家高技术研究发展计划项目SS2013AA031401, 国家自然科学基金项目51174009, 北京市自然科学基金项目2131001和2133062以及新金属材料国家重点实验室开放基金项目2012-Z08资助
图1  
图2  
图3  
图4  
Carbon addition O Total carbon Free carbon Co
16.50
16.60
16.70
16.75
Powder requirement
0.27
0.32
0.32
0.52
≤0.70
4.88
5.06
5.08
5.40
4.87~5.20
0.04
0.06
0.09
0.25
-
15.9
15.8
15.4
15.6
15.0~16.0
  
图5  
图6  
Carbon addition
%
Density
g·cm-3
Hardness
kg·mm-2
KIC
MPa·m1/2
TRS
MPa
16.50 13.79 1313 17.59 2911
16.60 13.90 1238 23.05 4020
16.70 13.85 1306 18.57 3654
16.75 13.82 1282 17.60 2337
  
图7  
图8  
[1] Fag Z Z, Wang X, Ryu T, Hwang K S, Sohn H Y. Int J Refract Met Hard Mater, 2009; 27: 288
[2] Wei C B, Song X Y, Fu J, Liu X M, Wang H B, Gao Y, Wang Y. Cryst Eng Comm, 2013; 15: 3305
[3] Liu S, Yi D Q, Li Y X, Zou D. Acta Metall Sin (Engl Lett), 2002; 15: 448
[4] Kim H C, Shon I J, Yooh J K, Doh J M. Int J Refract Met Hard Mater, 2007; 25: 46
[5] Xiong Y H, Lau K, Zhou X Y, Schoenung J M. J Clean Prod, 2008; 16: 1118
[6] Venkateswaran S, Schubert W D, Lux B. Int J Refract Met Hard Mater, 1996; 14: 263
[7] Zhang Q X, Zhang J X. Rare Met Cem Carbides, 1995; (4): 48
[7] (张齐勋, 张家雄. 稀有金属与硬质合金, 1995; (4): 48)
[8] Lee J C, Kim E Y, Kim J H, Kim W, Kim B S, Pandey B D. Int J Refract Met Hard Mater, 2011; 29: 365
[9] Hu Y J, Sun P M, Li H G, Chen A L. Rare Met Cem Carbides, 2004; 32(3): 53
[9] (胡宇杰, 孙培梅, 李洪桂, 陈爱良. 稀有金属与硬质合金, 2004; 32(3): 53)
[10] Sun B Q. Rare Met Cem Carbides, 1998; (3):12
[10] (孙宝琦. 稀有金属与硬质合金, 1998; (3): 12)
[11] Liu W B, Song X Y, Zhang J X, Zhang G Z, Liu X M. Int J Refract Met Hard Mater, 2009; 27: 115
[12] Zhang W B, Sha C S, Du Y, Wen G H, Xie W, Wang S Q. Acta Metall Sin, 2011; 47: 1307
[12] (张伟彬, 沙春生, 杜 勇, 温光华, 谢 文, 王社权. 金属学报, 2011; 47: 1307)
[13] Cao Z M, Song X Y, Qiao Z Y. Rare Met, 2008; 32: 216
[13] (曹战民, 宋晓艳, 乔芝郁. 稀有金属, 2008; 32: 216)
[14] Wei C B, Song X Y, Fu J, Lv X S, Wang H B, Gao Y, Zhao S X, Liu X M. J Mater Sci Technol, 2012; 28: 837
[15] Zhao S X, Song X Y, Liu X M, Wei C B, Wang H B, Gao Y. Acta Metall Sin, 2011; 47: 1188
[15] (赵世贤, 宋晓艳, 刘雪梅, 魏崇斌, 王海滨, 高 杨. 金属学报, 2011; 47: 1188)
[16] Joost R, Pirso J, Viljus M, Letunovits S, Juhani K. Est J Eng, 2012; 18: 127
[17] Liu W B, Song X Y, Zhang J X, Zhang G Z, Liu X M. Mater Chem Phy, 2008; 109: 235
[18] Konyashin I, Hlawatschek S, Ries B, Lachmann F, Dorn F, Sologubenko A, Weirich T. Int J Refract Met Hard Mater, 2009; 27: 234
[19] Christensen M, Wahnström G. Phys Rev, 2003; 67B: 115415
[20] Jia K, Fischer T E, Gallois B. Nanostruct Mater, 1998; 10: 875
[21] Fang Z Z. Int J Refract Met Hard Mater, 2005; 23: 119
[22] Fang Z Z, Lockwood G, Griffo A. Metall Mater Trans, 1999; 30A: 3231
[23] Wang X, Hwang K S, Koopman M, Fang Z Z, Zhang L H. Int J Refract Met Hard Mater, 2013; 36: 46
[24] Song S H, Li J C. Acta Metall Sin, 1987; 23: 521
[24] (宋士泓, 李健纯. 金属学报, 1987; 23: 521)
[25] Liu M L, Huang X Y, Duan S T, Shao D Q, Cui Y M, Yao Z M. Acta Metall Sin, 1982; 18: 689
[25] (刘曼朗, 黄孝瑛, 段石田, 邵大琴, 崔玉梅, 姚振梅. 金属学报, 1982; 18: 689)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.