Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 540-546    DOI: 10.3724/SP.J.1037.2013.00698
  本期目录 | 过刊浏览 |
N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*
王振玉1,2, 徐胜3, 张栋1, 刘新才2, 柯培玲1(), 汪爱英1
1 中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室, 宁波 315201
2 宁波大学材料科学与化学工程学院, 宁波 315211
3 高鸿集团有限公司, 湖州 313000
INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD
WANG Zhenyu1,2, XU Sheng3, ZHANG Dong1, LIU Xincai2, KE Peiling1(), WANG Aiying1
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
2 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211
3 TOPHONEST Co. Ltd, Huzhou 313000
引用本文:

王振玉, 徐胜, 张栋, 刘新才, 柯培玲, 汪爱英. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*[J]. 金属学报, 2014, 50(5): 540-546.
Zhenyu WANG, Sheng XU, Dong ZHANG, Xincai LIU, Peiling KE, Aiying WANG. INFLUENCE OF N2 FLOW RATE ON STRUCTURES AND MECHANICAL PROPERTIES OF TiSiN COATINGS PREPARED BY HIPIMS METHOD[J]. Acta Metall Sin, 2014, 50(5): 540-546.

全文: PDF(8648 KB)   HTML
摘要: 

采用高功率脉冲磁控溅射 (HIPIMS) 技术在N2流量为10~50 mL/min下沉积TiSiN涂层, 利用台阶仪, XRD, XPS, SPM, SEM, HRTEM和纳米压痕仪对涂层的沉积速率、相结构、成分、形貌和力学性能进行了分析, 并研究了不同N2流量对等离子体放电特性的影响. 结果表明, 在不同N2流量下, TiSiN涂层均具有非晶Si3N4包裹纳米晶TiN复合结构, 涂层表面粗糙度Ra为0.9~1.7 nm; 随N2流量的增加, 等离子体的放电程度减弱, 离化率降低, TiSiN涂层沉积速率降低, 其Ti含量逐渐降低, Si含量逐渐增加, 但变化幅度较小; 涂层择优取向随N2流量的增加发生改变, 晶粒尺寸逐渐增大, 硬度和弹性模量逐渐降低, 涂层硬度最高为(35.25±0.74) GPa.

关键词 高功率脉冲磁控溅射TiSiN涂层放电特性复合结构力学性能    
Abstract

Over the past years, TiSiN coatings have gained increasing importance in the field of cutting tool coatings due to its enhanced hardness and superior oxidation resistance properties produced by the nanocomposite microstructure of TiN nanocrystals embedded in an amorphous Si3N4 matrix. Many methods have been developed to prepare TiSiN coatings, typically named by the DC magnetron sputtering (DCMS) technique and cathodic arc ion plating (AIP), whereas limited studies have been carried out on the deposition of nanocomposite coatings using the high power impulse magnetron sputtering (HIPIMS) approach. The TiSiN coatings were reactively magnetron sputtered in mixed Ar/N2 precursor gases in a new HIPIMS system with different flow rate of N2 in this work. The deposition rate, crystal structure, composition, surface morphology, microstructure and mechanical properties were investigated systematically by surface profilometer, XRD, XPS, SPM, SEM, HRTEM and nano-indentation and the plasma discharge also was studied. The results show that increasing the flow rate of N2 caused the decrease of deposition rate as expected, accompanying with the change of preferred orientation from (200) orientation to (220) orientation and the decreased compactness, discharge degree and ionization rate. Contrary to the changes of Ti content, Si content gradually increased with increasing the flow rate of N2, but their changing scale were small. Combined with XRD and XPS analysis, the results indicated that the coatings were composed of crystalline TiN, amorphous Si3N4 and free Si. Besides, free Si disappeared with further increasing the flow rate of N2. This nanocomposite structure can ultimately be assessed by HRTEM where individual grains and the amorphous regions can be distinguished. In addition, the grain size increased gradually with increasing the flow rate of N2. Furthermore, both the hardness and elastic modulus linearly decreased with increasing the flow rate of N2 .

Key wordshigh power impulse magnetron sputtering    TiSiN coating    discharge characteristic    nanocomposite structure    mechanical property
    
ZTFLH:  TB3  
基金资助:* 国家重点基础研究发展计划项目2013CB632302和宁波市创新团队项目2011B81001资助
作者简介: null

王振玉, 男, 1987年生, 硕士生

图1  
图2  
图 3  
图4  
图5  
图6  
图7  
图8  
Flow rate / (mL·min-1) Ti N Si
10 39.11 54.75 6.14
20 38.34 55.17 6.49
30 37.46 55.43 7.11
40 37.22 54.89 7.89
50 37.01 54.85 8.14
  
图9  
图10  
[1] Xu J H, Ju H B, Yu L H. Acta Metall Sin, 2012; 48: 1132
[1] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[2] Kim T S, Park S S, Lee B T. Mater Lett, 2005; 59: 3929
[3] Procházka J, Karvánková P, Veprek-Heijman M G J, Veprek S. Mater Sci Eng, 2004; A384: 102
[3] Procházka J, Karvánková P, Veprek-Heijman M G J, Veprek S. Mater Sci Eng, 2004; A384: 102
[4] Veprek S, Reiprich S, Li S Z. Appl Phys Lett, 1995; 66: 2640
 Veprek S, Reiprich S. Thin Solid Films, 1995; 268: 64
[6] Veprek S, Veprek-Heijiman M G J, Karvankova P, Prochazka J. Thin Solid Films, 2005; 476: 1
[7] Shi J, Pei Z L, Gong J, Sun C, Jiang X. Acta Metall Sin, 2012; 48: 1349
[7] (时 婧, 裴志亮, 宫 骏, 孙 超, 姜 辛. 金属学报, 2012; 48: 1349)
[8] Wu Z Z, Tian X B, Cheng S D, Gong C Z, Yang S Q. Acta Metall Sin, 2012; 48: 283
[8] (吴忠振, 田修波, 程思达, 巩春志, 杨士勤. 金属学报, 2012; 48: 283)
[9] Veprek S. Thin Solid Films, 1998; 317: 449
[10] Musil J, Vlcek J, Zeman P. Adv Appl Ceram, 2008; 107: 148
[11] Mei F, Shao N, Hu X, Li G, Gu M. Mater Lett, 2005; 59: 2442
[12] Chang C L, Lin C T, Tsai P C, Ho W Y, Liu W J, Wang D Y. Surf Coat Technol, 2008; 202: 5516
[13] Yang S M, Chang Y Y, Wang D Y, Lin D Y, Wu W T. J Alloys Compd, 2007; 440: 375
[14] Qin X P, Ke P L, Wang A Y, Kim K H. Surf Coat Technol, 2013; 228: 275
[15] Oks E, Anders A. J Appl Phys, 2009; 105: 093304
[16] Wu B L, Wang Y N, Wang G, Zhao X, Zuo L, Liang Z D. J Mater Res, 2000; 14: 634
[16] (武保林, 王轶农, 王 刚, 赵 骧, 左 良, 梁志德. 材料研究学报, 2000; 14: 634)
[17] Huang P K, Yeh J W. Surf Coat Technol, 2009; 203: 1891
[18] Chawla V, Jayaganthan R, Chandra R. Surf Coat Technol, 2010; 204: 1582
[19] Uvarov V, Popov I. Mater Charact, 2007; 58: 883
[20] Pelleg J, Zevin L Z, Lungo S, Croitoru N. Thin Solid Films, 1991; 197: 117
[21] Chakrabarti K, Jeong J J, Hwang S K, Yoo Y C, Lee C M. Thin Solid Films, 2002; 406: 159
[22] Lin J L, Wang B, Ou Y X, William D S, Isaac D, John J M. Surf Coat Technol, 2013; 216: 251
[23] Machunze R, Ehiasarian A P, Tichelaar F D, Janssen G C A M. Thin Solid Films, 2009; 518: 1561
[24] Chawla V, Jayaganthan R, Chandra R. Mater Charact, 2008; 59: 1015
[25] Moulder J F, Sticke W F, Sobol P E, Bomben K D. Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1992: 1
[26] Yang T S, Yang M C, Shiu C B, Chang W K, Wong M S. Appl Surf Sci, 2006; 252: 3729
[27] Cardinaud C H, Lemperiere G, Peignon M C, Jouan P Y. Appl Surf Sci, 1993; 68: 595
[28] Casagrande A, Glisenti A, Lanzoni E, Tondello E, Mirenghi L, Casarin M, Bertomcello R. Surf Interf Anal, 1992; 18: 525
[29] Du H, Tressler R E, Spear K E, Pantano C G. Electrochem J Soc, 1989; 136: 1527
[30] Wang J F, Ma D Y, Song Z X, Tang W, Xu K W. Rare Met Mater Eng, 2009; 38: 753
[31] Veprek S. Surf Coat Technol, 1997; 97: 15
[32] Kim S H, Kim J K, Kim K H. Thin Solid Films, 2002; 420-421:360
[33] Ohring M. The Materials Science of Thin Films. San Diego: Academic Press, 1992: 182
[34] Van Vlack L H. Elements of Materials Science and Engineering. New York: Addition-Wesley Publishing Company, 1989: 554
[35] Patscheider J, Zrhnder T, Diserens M. Surf Coat Technol, 2001; 146-147: 201
[36] Hakamada M, Nakamota Y, Matsumoto H, Iwasaki H, Chen Y, Kusuda H. Mater Sci Eng, 2007; A457: 120
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.