Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 454-462    DOI: 10.3724/SP.J.1037.2013.00637
  本期目录 | 过刊浏览 |
Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*
马坪1, 吴二冬1(), 李武会2, 孙凯3, 陈东风3
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳110016
2 河南科技大学材料科学与工程学院, 洛阳 471003
3 中国原子能科学研究院, 北京 102413
MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS
MA Ping1, WU Erdong1(), LI Wuhui2, SUN Kai3, CHEN Dongfeng3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003
3 China Institute of Atomic Energy, Beijing 102413
引用本文:

马坪, 吴二冬, 李武会, 孙凯, 陈东风. Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*[J]. 金属学报, 2014, 50(4): 454-462.
Ping MA, Erdong WU, Wuhui LI, Kai SUN, Dongfeng CHEN. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. Acta Metall Sin, 2014, 50(4): 454-462.

全文: PDF(4291 KB)   HTML
摘要: 

采用XRD和SEM分析了Ti0.7Zr0.3(Cr1-xVx)2 (x=0.1, 0.2, 0.3, 0.4)合金的相组成、晶体结构和元素成分; 采用Sieverts装置、差热和热重分析仪(DTA-TG)测量了合金的活化性能、吸放氢P-C-T曲线、热力学参数及高温放氢特征. 结果表明, 合金为多相组织, 存在C36(P63/mmc)和C15(Fd3m) 2种Laves相和几种晶格常数近似的钒基bcc固溶体相. 当V含量较低时, 合金主要由C36型Laves相和少量bcc固溶体相组成. 随着V含量增加, C36型转变为C15型Laves相, 其中第3种(C层)堆垛存在几率增加, 而且合金中bcc固溶体相含量增加. 合金在2 MPa氢压和常温下能迅速活化; 表面氧化后, x=0.1和0.2合金仍表现出优异的活化性能. 随着V含量增加, 合金的贮氢量增加、平台压力减小. 合金氢化的相对偏摩尔焓变(ΔH)和熵变(ΔS)的变化范围为-7~ -28 kJ/mol和-35~ -95 J/(mol·K). DTA-TG分析表明, 合金氢化物分解主要出现在500~600 K温度区间, 并呈现对应不同类型氢化物的2个分解温度, 加热到800 K时合金中稳定的氢化物完全分解.

关键词 贮氢Laves相固溶体相P-C-T曲线热力学热重分析    
Abstract

The crystal structures and phase compositions of Ti0.7Zr0.3(Cr1-xVx)2 (x=0.1, 0.2, 0.3, 0.4) alloys are analyzed by the XRD and SEM. The hydrogen storage properties, activation performance, thermodynamics and high-temperature desorption process of the alloys are investigated by pressure-composition-temperature (P-C-T) and DTA-TG measurements. The results show that the Ti0.7Zr0.3(Cr1-xVx)2 alloys contain multi-phases, i.e. C36 (P63/mmc) and C15 (Fd3m) Laves phases and V-based bcc solid solution phases with different lattice constants. When the content of V in the alloy is low, the alloy basically consists of C36 type of Laves phase and small amount of bcc solid solution phase. As the content of V increases, the C36 type transfers into C15 type of Laves phase, where the probability of forming third type of stacking layers (C layers) increases, and the content of the bcc solid solution also increases. The alloys in bulk can be easily activated at 2 MPa and room temperature. The x=0.1, 0.2 alloys present excellent activation performance even after exposure in air for 20 d. As V content increases, the hydrogen absorption capacity of the alloy increases whereas the plateau pressure decreases. The relative partial molar enthalpy (ΔH) and entropy (ΔS) of hydrogen absorption for the alloys are found to be in the ranges of -7~-28 kJ/mol and -35~ -95 J/(mol·K). The DTA-TG analysis indicates that the hydrogen release from the hydrides of the alloys occur in two dissolving temperatures within the range of 500~600 K, and some residual hydrides have completely decomposed at heating temperature up to 800 K.

Key wordshydrogen storage    Laves phase    solid solution phase    pressure-concentration-temperature (P-C-T) curve    thermodynamics    DTA-TG analysis
收稿日期: 2013-10-10     
ZTFLH:  TG139.7  
基金资助:*国家自然科学基金项目11079043和国家重点基础研究发展计划项目2010CB833101资助
作者简介: null

马 坪, 男, 1983年生, 博士生

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
[1] Profio P D, Arca S, Rossi F, Filopponi M. Int J Hydrogen Energy, 2009; 34: 9173
[2] Kim J H, Lee H, Hwang K T, Han J S. Int J Hydrogen Energy, 2009; 34: 9424
[3] Park J M, Lee J Y. J Less-Common Met, 1990; 160: 259
[4] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[5] Park J G, Jang H Y, Han S C, Lee P S, Lee J Y. J Alloys Compd, 2001; 325: 293
[6] Bououdina M, Enoki H, Akiba E. J Alloys Compd, 1998; 281: 290
[7] Sakintuna B, Lamari-Darkrim F, Hirscher M. Int J Hydrogen Energy, 2007; 32: 1121
[8] Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191
[9] Guo X M. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
[9] (郭秀梅.中国科学院金属研究所博士学位论文, 沈阳, 2008)
[10] Liu X P, Cuevas F, Jiang L J, Latroche M, Li Z N, Wang S M. J Alloys Compd, 2009; 476: 403
[11] Tamura T, Tominaga Y, Matsumoto K, Fuda T, Kuriiwa T, Kamegawa A, Takamura H, Okada M. J Alloys Compd, 2002; 330-332: 522
[12] Pei P, Song X P, Zhao M, Zhang P L, Chen G L. Rare Met Mater Eng, 2008; 37: 1419
[13] Gao M X, Miao H, Zhao Y, Liu Y F, Pan H G. J Alloys Compd, 2009; 484: 249
[14] Akiba E, Iba H. Intermetallics, 1998; 6: 461
[15] Miao H, Gao M X, Liu Y F, Lin Y, Wang J H, Pan H G. Int J Hydrogen Energy, 2007; 32: 3947
[16] Stein F, Palm M, Sauthoff G. Intermetallics, 2004; 12: 713
[17] Fujitani S, Yonezu I, Saito T, Furukawa N. J Less-Common Met, 1991; 172-174: 220
[18] Mendelsohn M H, Gruen D M, Dwight A E. J Less-Common Met, 1979; 63: 193
[19] Kabutomori T, Takeda H, Wakisaka Y, Ohnishi K. J Alloys Compd, 1995; 231: 528
[20] Hang Z M, Xiao X Z, Tan D Z, He Z G, Li W P, Li S Q, Chen C P, Chen L X. Int J Hydrogen Energy, 2010; 35: 3080
[21] Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261
[22] Hong C M, Han D G, Lin Q Z. J Less-Common Met, 1991; 172-174: 1044
[23] Kay B D, Peden C H, Goodman D W. Phys Rev, 1986; 34B: 817
[24] Rudman P S. J Appl Phys, 1979; 50: 7195
[25] Muthukumar P, Satheesh A, Linder M, Merta R, Groll M. Int J Hydrogen Energy, 2009; 34: 7253
[26] Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509
[27] Mouri T, Iba H. Mater Sci Eng, 2002; A329-331: 346
[28] Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A. J Alloys Compd, 2002; 330-332: 511
[29] Krishna Kumar M, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 1890
[30] Muthukumar P, Linder M, Mertz R, Laurien E. Int J Hydrogen Energy, 2009; 34: 1873
[31] Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[32] Kesavan T R, Ramaprabhu S, Rama Rao K V S, Das T P. J Alloys Compd, 1996; 244: 164
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[5] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[6] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[7] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[8] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[9] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[11] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[12] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[13] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[14] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[15] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.