Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 863-873    DOI: 10.11900/0412.1961.2019.00352
  本期目录 | 过刊浏览 |
于家英1, 王华1, 郑伟森1, 何燕霖1(), 吴玉瑞2, 李麟1
1.上海大学材料科学与工程学院 上海 200444
2.上海汽车集团股份有限公司乘用车公司 上海 201804
Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors
YU Jiaying1, WANG Hua1, ZHENG Weisen1, HE Yanlin1(), WU Yurui2, LI Lin1
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Saic Motor Corporation Limited Passenger Vehicle Co. , Shanghai 201804, China
全文: PDF(4339 KB)   HTML


关键词 热浸镀锌高强汽车板界面层组织拉伸断裂原位分析热力学计算    

Hot-dip galvanizing is the most economical way to improve the corrosion resistance of advanced high strength automobile steel. With the high trend of developing of automobile steel towards light-weight and high-strength, the contents of Si, Mn, Al alloy elements in steel increase accordingly. These alloy elements would be selectively oxidized during hot-dip galvanizing process, which affect in turn the wettability of steel surface and form different interface microstructures. However, its effect on the mechanical behavior of steel has never been known as clear as desired. Base on this point, the thermodynamics of the surface oxide and its effect on the interface microstructure of three high-strength automobile steels were studied after the same hot-dip galvanizing treatment as well as their tensile fracture behavior under different deformation conditions was in situ analyzed. Combined with the microstructure analysis and thermodynamic calculation, it can be concluded that different compositions of steel would produce different kinds of oxide on its surface. When Mn2SiO4 and SiO2 were formed as thermodynamic stable phases, it was difficult to form a continuous Fe2Al5Zn0.4 inhibition layer at the interface, zinc liquid could penetrate into the iron substrate and then form the brittle phase ζ-FeZn13, where the crack was easily to be obtained and expanded to the substrate, resulting in the decrease of mechanical properties. When MnO and Mn2SiO4 with a small amount were formed as thermodynamic stable phase, the Fe2Al5Zn0.4 inhibition layer can be obtained. Under the tensile stress, this crack generated at the interface and extended to the zinc layer. So, the fracture of the experimental steel was mainly resulted from the failure of substrate. When MnO and FeO were formed as metastable phase, Fe, as formed by aluminothermic reduction during hot-dip galvanizing, would reacted with zinc liquid to form Γ-Fe11Zn40 phase in the zinc layer. The crack generated under the tensile stress and expanded in the zinc layer. Since the unreduced MnO layer at the interface exhibited a higher bonding strength with substrate, tensile fracture of the experimental steel was caused by the failure of substrate.

Key wordshot-dip galvanizing high-strength automobile steel    interface microstructure    tensile fracture    in situ analysis    thermodynamic calculation
收稿日期: 2019-10-21     
ZTFLH:  TQ153.1  
通讯作者: 何燕霖     E-mail:
Corresponding author: HE Yanlin     E-mail:
作者简介: 于家英,男,1995年生,硕士生


于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
Jiaying YU, Hua WANG, Weisen ZHENG, Yanlin HE, Yurui WU, Lin LI. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors. Acta Metall Sin, 2020, 56(6): 863-873.

链接本文:      或

Steel No.CMnSiCrAlTiFe
表1  3种高强钢的化学成分 (mass fraction / %)
图1  原位分析时拉伸实验样品尺寸示意图
图2  3种高强钢经HCl、H2SO4腐蚀后的表面形貌及EDS分析
图3  No.1钢在退火温度为870 ℃、露点为+10 ℃热浸镀锌条件下基体/Zn层界面组织的TEM分析
图4  No.2钢在退火温度为870 ℃、露点为+10 ℃热浸镀锌条件下基体/Zn层界面组织的TEM分析
图5  No.3钢在退火温度为870 ℃、露点为+10 ℃热浸镀锌条件下基体/Zn层界面组织的TEM分析
图6  3种高强钢在不同O2分压下的表面氧化物含量
图7  No.1钢拉伸至不同变形量时裂纹扩展的原位分析
图8  No.2钢拉伸至不同变形量时裂纹扩展的原位分析
图9  No.3钢拉伸至不同变形量时裂纹扩展的原位分析
图10  3种高强镀锌板与去锌板的工程应力-工程应变曲线
图11  3种高强镀锌板与去锌板的力学性能
图12  3种高强钢界面组织对其拉伸断裂行为的影响示意图
[1] Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [J]. Iron Steel, 2019, 54(2): 1
[1] 王存宇, 杨 洁, 常 颖等. 先进高强度汽车钢的发展趋势与挑战 [J]. 钢铁, 2019, 54(2): 1
[2] Wang A H, Zhu J F. Development trend of substituting hot-biq galvanized sheet for electro-galvanized sheet [J]. Res. Iron Steel, 2007, 35(6): 53
[2] 王爱华, 朱久发. 国内外热镀锌板取代电镀锌板的发展趋势 [J]. 钢铁研究, 2007, 35(6): 53
[3] Miyata M, Fushiwaki Y, Suzuki Y, et al. Effect of Si/Mn ratio on galvannealing behavior of Si-addied steel [J]. ISIJ Int., 2018, 58: 1600
[4] Blumenau M, Norden M, Friedel F, et al. Reactive wetting during hot-dip galvanizing of high manganese alloyed steel [J]. Surf. Coat. Technol., 2011, 205: 3319
[5] Bellhouse E M, McDermid J R. Selective oxidation and reactive wetting of 1.0 pct Si-0.5 pct Al and 1.5 pct Si TRIP-assisted steels [J]. Metall. Mater. Trans., 2010, 41A: 1539
[6] Bellhouse E M, Mertens A I M, McDermid J R. Development of the surface structure of TRIP steels prior to hot-dip galvanizing [J]. Mater. Sci. Eng., 2007, A463: 147
[7] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum [J]. Scr. Mater., 2013, 68: 365
[8] Gupta A K, Kumar D A. Formability of galvanized interstitial-free steel sheets [J]. J. Mater. Process. Technol, 2006, 172: 225
[9] Liu H C, Li F, Shi W, et al. Characterization of hot-dip galvanized coating on dual phase steels [J]. Surf. Coat. Technol., 2011, 205: 3535
[10] Cho L, Lee S J, Kim M S, et al. Influence of gas atmosphere dew point on the selective oxidation and the reactive wetting during hot dip galvanizing of CMnSi TRIP steel [J]. Metall. Mater. Trans., 2013, 44A: 362
[11] Gong Y F, Kim H S, De Cooman B C. Formation of surface and subsurface oxides during ferritic, intercritical and austenitic annealing of CMnSi TRIP steel [J]. ISIJ Int., 2008, 48: 1745
doi: 10.2355/isijinternational.48.1745
[12] Lee S K, Kim J S, Choi J W, et al. Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B [J]. Met. Mater. Int., 2011, 17: 251
[13] Lins V D F C, Madeira L, Vilela J M C, et al. Selective oxidation of dual phase steel after annealing at different dew points [J]. Appl. Surf. Sci., 2011, 257: 5871
doi: 10.1016/j.apsusc.2011.01.126
[14] Suzuki Y, Yamashita T, Sugimoto Y, et al. Thermodynamic analysis of selective oxidation behavior of Si and Mn-added steel during recrystallization annealing [J]. ISIJ Int., 2009, 49: 564
[15] Huin D, Flauder P, Leblond J B. Numerical simulation of internal oxidation of steels during annealing treatments [J]. Oxid. Met., 2005, 64: 131
[16] Bellhouse E M, Mcdermid J R. Selective oxidation and reactive wetting during hot-dip galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-assisted steel [J]. Metall. Mater. Trans., 2012, 43A: 2426
[17] Bellhouse E M, Mcdermid J R. Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels [J]. Mater. Sci. Eng., 2008, A491: 39
[18] Bellhouse E M, McDermid J R. Selective oxidation and reactive wetting during galvanizing of a CMnAl TRIP-assisted steel [J]. Metall. Mater. Trans., 2011, 42A: 2753
[19] Wang K K, Hsu C W, Chang L W, et al. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel [J]. Appl. Surf. Sci., 2013, 285: 458
doi: 10.1016/j.apsusc.2013.08.077
[20] Li F, Liu H, Shi W, et al. Hot dip galvanizing behavior of advanced high strength steel [J]. Mater. Corros., 2012, 63: 396
[21] Jeong T K, Jung G, Lee K, et al. Selective oxidation of Al rich Fe-Mn-Al-C low density steels [J]. Mater. Sci. Technol., 2014, 30: 1805
[22] Song G M, Sloof W G. Effect of alloying element segregation on the work of adhesion of metallic coating on metallic substrate: Application to zinc coatings on steel substrates [J]. Surf. Coat. Technol., 2011, 205: 4632
[23] Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
[24] Okamoto N L, Kashioka D, Inomoto M, et al. Compression deformability of Γ and ζ Fe-Zn intermetallics to mitigate detachment of brittle intermetallic coating of galvannealed steels [J]. Scr. Mater., 2013, 69: 307
[25] Song G M, Vystavel T, van der Pers N, et al. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel [J]. Acta Mater., 2012, 60: 2973
[1] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[2] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
[3] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[4] 梁静静,朱明,袁忠华,王君武,金涛,孙晓峰,胡壮麒. Re对NiCoCrAlY涂层合金相组成的影响[J]. 金属学报, 2013, 49(3): 330-340.
[5] 马跃 苏航 潘涛 余音宏 杨才福 张永权 彭云. 中高碳钢中复合延性夹杂物控制研究[J]. 金属学报, 2012, 48(11): 1321-1328.
[6] 王衣 孙锋 董显平 张澜庭 单爱党. 新型Ni-Co基高温合金中平衡析出相的热力学研究[J]. 金属学报, 2010, 46(3): 334-339.
[7] 蒯春光; 彭志方 . T/P91钢在450-1200 ℃区间 各相元素的分配特征及相稳定性[J]. 金属学报, 2008, 44(8): 897-900 .
[8] 于金; 蒋建清; 方峰; 董岩; 谈荣生; 吴三械 . 真空铝热还原法制备金属Sr的热力学分析及实验研究[J]. 金属学报, 2005, 41(8): 824-828 .
[9] 吴翠微; 董建新; 张麦仓; 王改莲; 谢锡善 . α-Cr相在IN718合金中的析出及其热力学计算[J]. 金属学报, 2001, 37(11): 1174-1178 .
[10] 丁学勇;王文忠. 二元系熔体中组元活度的计算式[J]. 金属学报, 1994, 30(22): 444-447.
[11] 丁学勇;王文忠;韩其勇. Fe-P-j三元系熔体的热力学计算[J]. 金属学报, 1993, 29(12): 21-26.