Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 66-82    DOI: 10.11900/0412.1961.2019.00187
  综述 本期目录 | 过刊浏览 |
金属诱导晶化基础与应用研究进展
王祖敏1(),张安1,陈媛媛1,黄远1,王江涌2
1. 天津大学材料科学与工程学院 天津 300350
2. 汕头大学物理系 汕头 515063
Research Progress on Fundamentals and Applications of Metal-Induced Crystallization
WANG Zumin1(),ZHANG An1,CHEN Yuanyuan1,HUANG Yuan1,WANG Jiangyong2
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2. Department of Physics, Shantou University, Shantou 515063, China
引用本文:

王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
Zumin WANG, An ZHANG, Yuanyuan CHEN, Yuan HUANG, Jiangyong WANG. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. Acta Metall Sin, 2020, 56(1): 66-82.

全文: PDF(16411 KB)   HTML
摘要: 

将非晶半导体与金属相接触,可以诱导非晶半导体在极低的温度下结晶,这一现象被称为金属诱导晶化。薄膜状态的晶体半导体是用于众多先进技术中的关键材料,被广泛应用于微电子、光电子、显示技术和光伏技术等领域。金属诱导晶化为低温晶体半导体器件的制造、纳米多孔金属材料的合成以及金属材料界面工程提供了一种崭新的途径,引起了学术界和工业界的广泛关注。本文综述了金属诱导晶化的研究进展,对不同金属/非晶半导体体系中存在的金属诱导晶化现象进行了归纳分类总结,对其热力学原理和动力学机制进行了详细的计算与分析,突出了界面热力学在薄膜体系的固→固相变中的作用,最终阐明了金属诱导晶化过程的内在机理,并对金属诱导晶化过程未来的研究趋势进行了展望。

关键词 金属诱导晶化界面热力学金属/半导体体系固相反应对流传输    
Abstract

By contacting amorphous semiconductors with metals, amorphous semiconductors can be induced to transform into crystalline semiconductors at extremely low temperatures, a phenomenon known as metal-induced crystallization (MIC). Thin-film crystalline semiconductor is one of the key materials in many advanced technologies, and is widely used in the fields of microelectronics, optoelectronics, display technology and photovoltaic technology. MIC provides a new route for the production of crystalline semiconductor thin-films devices at low temperature, for fabrication of nanoporous metal materials and for interface engineering of metallic materials, and has therefore attracted wide interests from both academic and industrial communities. This paper reviews the current research progress of metal-induced crystallization of amorphous semiconductors at low temperatures, and the MIC behaviors in different metal/amorphous semiconductor systems are also classified and summarized. The thermodynamics and kinetics of MIC were calculated and analyzed in detail, highlighting the role of interface thermodynamics in the solid-solid phase transformation of thin-film systems. On this basis, the underlying mechanism of MIC has been elucidated. Finally, the future research trends of MIC are prospected.

Key wordsmetal-induced crystallization    interface thermodynamics    metal/semiconductor system    solid-phase reaction    convective transportation
收稿日期: 2019-06-06     
ZTFLH:  TG111.5  
基金资助:国家自然科学基金项目(51571148);国家重点研发计划项目(2017YFE0302600)
作者简介: 王祖敏,男,1979年生,教授,博士
图1  非晶半导体材料浸润金属晶界的示意图[30],及非晶Si和非晶Ge半导体浸润大角度Al晶界的界面热力学分析、非晶Si浸润大角度Ag和Au晶界的界面热力学分析[27]
图2  100 nm Al/150 nm非晶Si双层膜退火期间非晶Si浸润金属Al晶界过程的原位加热价带能量过滤式透射电子显微镜观测[33]
图3  非晶半导体在不同形核位点进行低温结晶的示意图,晶体Ge (或Si)在Al晶界和Al/非晶Ge (或者Al/非晶Si)界面处形核的界面热力学分析,及晶体Si在Ag晶界、Au晶界、Ag/非晶Si以及Au/非晶Si界面处形核的界面热力学分析[27]
图4  150 ℃退火处理的100 nm晶体Al/150 nm非晶Si双层膜中晶体Si在大角度Al晶界处形核过程的原位加热高分辨透射电子显微镜观察(截面方向)[33]
图5  金属诱导非晶Si和非晶Ge晶化过程中不同结晶行为的原位XRD观察[27]
图6  非晶SiGe在晶体Al/非晶SiGe界面和Al晶界处晶化时的界面能(γ')、体结晶能(ΔG)和形核临界厚度(hin??GB?crit、hinterf?crit)的界面热力学分析,在临界温度(约320 ℃)下晶体SiGe在晶体Al/非晶SiGe界面处发生晶化过程的示意图,及沉积态与不同温度(250~400 ℃)退火态的晶体Al/非晶SiGe样品的XRD谱[55]
图7  晶体Si或晶体Ge在Al晶界处初始形核完成后继续浸润晶界的界面热力学分析,及晶体Ge和晶体Si晶粒在原始Al层中(垂直于原始Al的晶界方向)连续横向生长的界面热力学临界厚度(hcrit)分析[27]
图8  150 nm非晶Si/100 nm Al双层膜在220和240 ℃退火时形核的晶体Si晶粒在Al底层横向生长的原位价带能量过滤式透射电子显微镜观察,及膜层交换的发生:Al亚层和Si亚层在280 ℃退火时交换了相互位置[34]
图9  相对于试样表面Ge层的法向和横向的电子背散射衍射图,及通过电子背散射衍射分析所计算出的试样的晶粒尺寸分布图[110]
图10  近室温条件下采用气相-晶界-固相(VGBS)法制备(半导体)晶体纳米网络的示意图[38]
[1] Oki F, Ogawa Y, Fujiki Y. Effect of deposited metals on the crystallization temperature of amorphous germanium film [J]. Jpn. J. Appl. Phys., 1969, 8: 1056
[2] Bosnell J R, Voisey U C. The influence of contact materials on the conduction crystallization temperature and electrical properties of amorphous germanium, silicon and boron films [J]. Thin Solid Films, 1970, 6: 161
[3] Herd S R, Chaudhari P, Brodsky M H. Metal contact induced crystallization in films of amorphous silicon and germanium [J]. J. Non-Cryst. Solids, 1972, 7: 309
[4] Ottaviani G, Sigurd D, Marrello V, et al. Crystal growth of silicon and germanium in metal films [J]. Science, 1973, 180: 948
[5] Sigurd D, Ottaviani G, Arnal H J, et al. Crystallization of Ge and Si in metal films. II [J]. J. Appl. Phys., 1974, 45: 1740
[6] Brodsky M H, Turnbull D. Low temperature eutectic induced crystallization of amorphous materials [A]. AMER Inst Physics Circulation Fulfillment Div, 500 Sunnyside Blvd, Woodbury [C]. 1971, 16(3): 304
[7] Konno T J, Sinclair R. Crystallization of silicon in aluminium/amorphous-silicon multilayers [J]. Philos. Mag., 1992, 66B: 749
[8] Sinclair R, Konno T J. In situ HREM: Application to metal-mediated crystallization [J]. Ultramicroscopy, 1994, 56: 225
[9] Konno T J, Sinclair R. Metal-mediated crystallization of amorphous silicon in silicon-silver layered systems [J]. Philos. Mag., 1995, 71B: 163
[10] Konno T J, Sinclair R. Metal-contact-induced crystallization of semiconductors [J]. Mater. Sci. Eng., 1994, A179-180: 426
[11] Sinclair R, Morgiel J, Kirtikar A S, et al. Direct observation of crystallization in silicon by in situ high-resolution electron microscopy [J]. Ultramicroscopy, 1993, 51: 41
[12] Nast O, Puzzer T, Koschier L M, et al. Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature [J]. Appl. Phys. Lett., 1998, 73: 3214
[13] Nast O, Hartmann A J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon [J]. J. Appl. Phys., 2000, 88: 716
[14] Nast O, Wenham S R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization [J]. J. Appl. Phys., 2000, 88: 124
[15] Lee S W, Jeon Y C, Joo S K. Pd induced lateral crystallization of amorphous Si thin films [J]. Appl. Phys. Lett., 1995, 66: 1671
[16] Lee S W, Joo S K. Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 160
[17] Jin Z H, Bhat G A, Yeung M, et al. Nickel induced crystallization of amorphous silicon thin films [J]. J. Appl. Phys., 1998, 84: 194
[18] Wang J Y, Zalar A, Zhao Y H, et al. Determination of the interdiffusion coefficient for Si/Al multilayers by Auger electron spectroscopical sputter depth profiling [J]. Thin Solid Films, 2003, 433: 92
[19] Zhao Y H, Wang J Y, Mittemeijer E J. Microstructural changes in amorphous Si/crystalline Al thin bilayer films upon annealing [J]. Appl. Phys., 2004, 79A: 681
[20] Wang J Y, Mittemeijer E J. A new method for the determination of the diffusion-induced concentration profile and the interdiffusion coefficient for thin film systems by Auger electron spectroscopical sputter depth profiling [J]. J. Mater. Res., 2004, 19: 3389
[21] He D, Wang J Y, Mittemeijer E J. The initial stage of the reaction between amorphous silicon and crystalline aluminum [J]. J. Appl. Phys., 2005, 97: 093524
[22] He D, Wang J Y, Mittemeijer E J. Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: Microstructural and thermodynamic analysis of layer exchange [J]. Appl. Phys., 2005, 80A: 501
[23] Wang J Y, He D, Zhao Y H, et al. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon [J]. Appl. Phys. Lett., 2006, 88: 061910
[24] Wang Z M, Wang J Y, Jeurgens L P H, et al. "Explosive" crystallisation of amorphous germanium in Ge/Al layer systems; Comparison with Si/Al layer systems [J]. Scr. Mater., 2006, 55: 987
[25] Wang J Y, Wang Z M, Mittemeijer E J. Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers [J]. J. Appl. Phys., 2007, 102: 113523
[26] Wang Z M, Wang J Y, Jeurgens L P H, et al. Tailoring the ultrathin Al-induced crystallization temperature of amorphous Si by application of interface thermodynamics [J]. Phys. Rev. Lett., 2008, 100: 125503
[27] Wang Z M, Wang J Y, Jeurgens L P H, et al. Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers [J]. Phys. Rev., 2008, 77B: 045424
[28] Wang Z M, Wang J Y, Jeurgens L P H, et al. Investigation of metal-induced crystallization in amorphous Ge/crystalline Al bilayers by Auger microanalysis and selected-area depth profiling [J]. Surf. Interface Anal., 2008, 40: 427
[29] Wang Z M, Wang J Y, Jeurgens L P H, et al. Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers [J]. Acta Mater., 2008, 56: 5047
[30] Wang Z M, Jeurgens L P H, Wang J Y, et al. Fundamentals of metal-induced crystallization of amorphous semiconductors [J]. Adv. Eng. Mater., 2009, 11: 131
[31] Wang Z M, Jeurgens L P H, Wang J Y, et al. High-resolution transmission-electron-microscopy study of ultrathin Al-induced crystallization of amorphous Si [J]. J. Mater. Res., 2009, 24: 3294
[32] Wang Z M, Gu L, Jeurgens L P H, et al. Thermal stability of Al/nanocrystalline-Si bilayers investigated by in situ heating energy-filtered transmission electron microscopy [J]. J. Mater. Sci., 2011, 46: 4314
[33] Wang Z M, Gu L, Phillipp F, et al. Metal-catalyzed growth of semiconductor nanostructures without solubility and diffusivity constraints [J]. Adv. Mater., 2011, 23: 854
[34] Wang Z M, Gu L, Jeurgens L P H, et al. Real-time visualization of convective transportation of solid materials at nanoscale [J]. Nano Lett., 2012, 12: 6126
[35] Gordon I, Carnel L, Van Gestel D, et al. Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization [J]. Thin Solid Films, 2008, 516: 6984
[36] Kim H Y, Seok K H, Chae H J, et al. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors [J]. Solid-State Electron., 2017, 132: 73
[37] Gordon I, Carnel L, Van Gestel D, et al. 8% efficient thin‐film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD [J]. Prog. Photovoltaics: Res. Appl., 2007, 15: 575
[38] Wang Z M, Mittemeijer E J. Vapor-defect-solid growth mechanism for NanoNets utilizing natural defect networks in polycrystals [J]. Mater. Des., 2018, 150: 206
[39] Hayzelden C, Batstone J L, Cammarata R C. In situ transmission electron microscopy studies of silicide-mediated crystallization of amorphous silicon [J]. Appl. Phys. Lett., 1992, 60: 225
[40] Hayzelden C, Batstone J L. Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films [J]. J. Appl. Phys., 1993, 73: 8279
[41] Yoon S Y, Park S J, Kim K H, et al. Metal-induced crystallization of amorphous silicon [J]. Thin Solid Films, 2001, 383: 34
[42] Cottrell T L. The Strengths of Chemical Bonds [M]. 2nd Ed., London: Butterworth, 1958: 1
[43] Hiraki A, Nicolet M A, Mayer J W. Low-temperature migration of silicon in thin layers of gold and platinum [J]. Appl. Phys. Lett., 1971, 18: 178
[44] Hiraki A, Shuto K, Kim S, et al. Room-temperature interfacial reaction in Au-semiconductor systems [J]. Appl. Phys. Lett., 1977, 31: 611
[45] Hiraki A. Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? [J]. Surf. Sci. Rep., 1983, 3: 357
[46] Hiraki A. A model on the mechanism of room temperature interfacial intermixing reaction in various metal-semiconductor couples: What triggers the reaction? [J]. J. Electrochem. Soc., 1980, 127: 2662
[47] Okuno K, Ito T, Iwami M, et al. Presence of critical Au-film thickness for room temperature interfacial reaction between Au(Film) and Si(Crystal substrate) [J]. Solid State Commun., 1980, 34: 493
[48] Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1
[49] Egerton R F. Electron Energy-Loss Spectroscopy in the Electron Microscope [M]. 3rd Ed., Boston, MA: Springer, 2011: 1
[50] Jeurgens L P H, Wang Z M, Mittemeijer E J. Thermodynamics of reactions and phase transformations at interfaces and surfaces [J]. Int. J. Mater. Res., 2009, 100: 1281
[51] Slater J C. Atomic radii in crystals [J]. J. Chem. Phys., 1964, 41: 3199
[52] Li B Q, Zheng B, Zhang S Y, et al. Dependence of fractal formation on the thickness ratio in Al/a-Ge bilayers [J]. Phys. Rev., 1993, 47B: 3638
[53] Katsuki F, Hanafusa K, Yonemura M, et al. Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate [J]. J. Appl. Phys., 2001, 89: 4643
[54] Seibt M, Buschbaum S, Gnauert U, et al. Nanoscale observation of a grain boundary related growth mode in thin film reactions [J]. Phys. Rev. Lett., 1998, 80: 774
[55] Zhang T W, Ma F, Zhang W L, et al. Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe [J]. Appl. Phys. Lett., 2012, 100: 071908
[56] Hu S, McIntyre P C. Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures [J]. J. Appl. Phys., 2012, 111: 044908
[57] Hu S, Marshall A F, McIntyre P C. Interface-controlled layer exchange in metal-induced crystallization of germanium thin films [J]. Appl. Phys. Lett., 2010, 97: 082104
[58] Gardelis S, Nassiopoulou A G, Manousiadis P, et al. A silicon-wafer based p-n junction solar cell by aluminum-induced recrystallization and doping [J]. Appl. Phys. Lett., 2013, 103: 241114
[59] Scholz M, Gjukic M, Stutzmann M. Silver-induced layer exchange for the low-temperature preparation of intrinsic polycrystalline silicon films [J]. Appl. Phys. Lett., 2009, 94: 012108
[60] Park J H, Kurosawa M, Kawabata N, et al. Au-induced low-temperature (~250 ℃) crystallization of Si on insulator through layer-exchange process [J]. Electrochem. Solid-State Lett., 2011, 14: H232
[61] Tai L X, Zhu D M, Liu X, et al. Direct growth of graphene on silicon by metal-free chemical vapor deposition [J]. Nano-Micro Lett., 2018, 10: 20
[62] Gordon I, Van Gestel D, Qiu Y, et al. Processing and characterization of efficient thin-film polycrystalline silicon solar cells [A]. Proceedings of 2008 33rd IEEE Photovoltaic Specialists Conference [C]. San Diego, CA, USA: IEEE, 2008: 1
[63] ? Tüzün, Slaoui A, Gordon I, et al. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping [J]. Thin Solid Films, 2008, 516: 6892
[64] ? Tüzün, Qiu Y, Slaoui A, et al. Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 1869
[65] Gall S, Becker C, Lee K Y, et al. Polycrystalline silicon thin-film solar cells on ZnO:Al-coated glass substrates [A]. Proceedings of 2009 34th IEEE Photovoltaic Specialists Conference [C]. Philadelphia, PA: IEEE, 2009: 197
[66] Aberle A G, Straub A, Widenborg P I, et al. Polycrystalline silicon thin-film solar cells on glass by aluminium‐induced crystallisation and subsequent ion‐assisted deposition (ALICIA) [J]. Prog. Photovoltaics: Res. Appl., 2005, 13: 37
[67] Van Gestel D, Gordon I, Poortmans J. Metal induced crystallization of amorphous silicon for photovoltaic solar cells [J]. Phys. Procedia, 2011, 11: 196
[68] Prathap P, Tuzun O, Madi D, et al. Thin film silicon solar cells by AIC on foreign substrates [J]. Sol. Energy Mater. Sol. Cells, 2011, 95: S44
[69] Toko K, Numata R, Saitoh N, et al. Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange [J]. J. Appl. Phys., 2014, 115: 094301
[70] Numata R, Toko K, Saitoh N, et al. Orientation control of large-grained Si films on insulators by thickness-modulated Al-induced crystallization [J]. Cryst. Growth Des., 2013, 13: 1767
[71] Van Gestel D, Gordon I, Poortmans J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective [J]. Sol. Energy Mater. Sol. Cells, 2013, 119: 261
[72] Shekoofa O, Wang J, Li D J, et al. Nano-crystalline thin films fabricated by Si-Al co-sputtering and metal induced crystallization for photovoltaic applications [J]. Sol. Energy, 2018, 173: 539
[73] Shekoofa O, Wang J, Li D J, et al. P-silicon thin film fabricated by magnetron sputtering and aluminium induced crystallization for Schottky silicon solar cells [J]. Mater. Sci. Semicond. Process., 2017, 71: 366
[74] Hamasha E, Masadeh G, Shariah A, et al. Aluminum induced crystallization of amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. Sol. Energy, 2016, 127: 223
[75] Hamasha K, Hamasha E, Masadeh G, et al. Aluminum-induced crystallization of hydrogenated amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. J. Disp. Technol., 2016, 12: 82
[76] Shekoofa O, Wang J, Luo Y, et al. Impacts of the annealing profile on AIC thin film solar cell characteristics fabricated by magnetron sputtering [A]. Proceedings of the 33rd International Conference on the Physics of Semiconductors [C]. Beijing: IOP Publishing, 2017: 012006
[77] Toko K, Nakata M, Okada A, et al. Influence of substrate on crystal orientation of large-grained Si thin films formed by metal-induced crystallization [J]. Int. J. Photoenergy, 2015, 2015: 790242
[78] Bhopal M F, Lee D W, Lee S H. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate [J]. Electron. Mater. Lett., 2016, 12: 651
[79] Karaman M, Tüzün ?zmen ?, Sedani S H, et al. Effects of glass substrate coated by different-content buffer layer on the quality of poly‐Si thin films [J]. Phys. Status Solidi, 2016, 213A: 3142
[80] Hainey Jr M F, Innocent-Dolor J L, Choudhury T H, et al. Controlling silicon crystallization in aluminum-induced crystallization via substrate plasma treatment [J]. J. Appl. Phys., 2017, 121: 115301
[81] Sanford J L, Libsch F R. 4.2: TFT AMOLED pixel circuits and driving methods [J]. SID Symp. Dig. Tech. Pap.,2003, 34: 10
[82] Lee J H, You B H, Han C W, et al. P-2: A new a-Si:H TFT pixel circuit suppressing OLED current error caused by the hysteresis and threshold voltage shift for active matrix organic light emitting diode [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 228
[83] Hasumi T, Takasugi S, Kanoh K, et al. 46.2: New OLED pixel circuit and driving method to suppress threshold voltage shift of a-Si:H TFT [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1547
[84] Yeh S H, Sun W T, Yu J S, et al. P-173L: Late-news poster: A 2.2-inch QVGA system-on-glass LCD using P-type low temperature poly-silicon thin film transistors [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 352
[85] Chang Y J, Kim Y L, Shim S H, et al. 28.3: World's largest (21.3 in.) UXGA non-laser LTPS AMLCD [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1276
[86] Lee S W, Ihn T H, Joo S K. Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 407
[87] Meng Z G, Wang M X, Wong M. High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications [J]. IEEE Trans. Electron Devices, 2000, 47: 404
[88] Cammarata R C, Thompson C V, Hayzelden C, et al. Silicide precipitation and silicon crystallization in nickel implanted amorphous silicon thin films [J]. J. Mater. Res., 1990, 5: 2133
[89] Meng Z G, Chen H Y, Qiu C F, et al. 24.3: Active‐matrix organic light-emitting diode display implemented using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors [J]. SID Symp. Dig. Tech. Pap., 2001, 32: 380
[90] Zhao S Y, Meng Z G, Wong M, et al. Metal-induced continuous zonal domain (CZD) polycrystalline silicon thin-film transistors and its application on field sequential color liquid crystal display [J]. J. Disp. Technol., 2010, 6: 135
[91] Meng Z G, Li C, Kwok H S, et al. Application of re-crystallized metal‐induced unilaterally crystallized polycrystalline-silicon thin-film-transistor technology to reflective liquid-crystaldisplay [J]. J. Soc. Inf. Disp., 2001, 9: 319
[92] Kim S H, Lee S H, Park W H, et al. 48.3: A 2 inch LTPS AMOLED with an embedded lateral p-i-n photodiode sensors [J]. SID Symp. Dig. Tech. Pap., 2008, 39: 724
[93] Chen Y H, Yen L C, Chang T S, et al. Low-temperature polycrystalline-silicon tunneling thin-film transistors with MILC [J]. IEEE Electron Device Lett., 2013, 34: 1017
[94] Ma W C Y, Hsu H S, Fang C C, et al. Impacts of channel film thickness on poly-Si tunnel thin-film transistors [J]. Thin Solid Films, 2018, 660: 926
[95] Nakata M, Toko K, Saitoh N, et al. Orientation control of intermediate-composition SiGe on insulator by low-temperature Al-induced crystallization [J]. Scr. Mater., 2016, 122: 86
[96] Matsumura R, Wang Y F, Jevasuwan W, et al. Single grain growth of Si thin film on insulating substrate by limited region aluminum induced crystallization [J]. Mater. Lett., 2019, 252: 100
[97] Park J H, Seok K H, Kiaee Z, et al. Thermal stress effects on the electrical properties of p-channel polycrystalline-silicon thin-film transistors fabricated via metal-induced lateral crystallization [J]. IEEE Trans. Semicond. Manuf., 2015, 28: 35
[98] Park J H, Han J S, Joo S K. Electrical properties of metal-induced laterally crystallized p-type LTPS-TFT with high-κ ZrTiO4 gate dielectric featuring low equivalent-oxide-thickness [J]. IEEE Trans. Electron Devices, 2016, 63: 2391
[99] Shamim M Z, Persheyev S K, Rose M J. Electron field emission display based on AIC-PECVD thin silicon films [A]. Proceedings of 2016 10th International Conference on Intelligent Systems and Control [C]. Coimbatore, India: IEEE, 2016: 1
[100] Ohkubo S, Ide T, Okada M. Basic study of write-once media for blue-violet laser [J]. Tech. Dig. Opt. Data Storage, 2001: 34
[101] Lee J B, Lee C J, Choi D K. Influences of various metal elements on field aided lateral crystallization of amorphous silicon films [J]. Jpn. J. Appl. Phys., 2001, 40: 6177
[102] Inoue H, Mishima K, Aoshima M, et al. Inorganic write-once disc for high speed recording [J]. Jpn. J. Appl. Phys., 2003, 42: 1059
[103] Her Y C, Wu C L. Feasibility of Cu/a-Si bilayer for high data-transfer-rate write-once blue-ray recording [J]. Jpn. J. Appl. Phys., 2004, 43: 1013
[104] Germain P, Squelard S, Bourgoin J, et al. Crystallization kinetics of amorphous germanium [J]. J. Appl. Phys., 1977, 48: 1909
[105] Wu T H, Kuo P C, Fang Y H, et al. Microstructure and recording mechanism of Ge/Au bilayer media for write-once optical disc [J]. Appl. Phys. Lett., 2007, 90: 151111
[106] Her Y C, Chen J H, Tsai M H, et al. Nickel-induced crystallization of amorphous Ge film for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2009, 106: 023530
[107] Her Y C, Tu W T, Tsai M H. Phase transformation and crystallization kinetics of a-Ge/Cu bilayer for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2012, 111: 043503
[108] Nakata M, Toko K, Jevasuwan W, et al. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates [J]. Appl. Phys. Lett., 2015, 107: 133102
[109] Toko K, Nakata M, Jevasuwan W, et al. Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor-liquid-solid growth [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18120
[110] Toko K, Nakazawa K, Saitoh N, et al. Double-layered Ge thin films on insulators formed by an Al-induced layer-exchange process [J]. Cryst. Growth Des., 2013, 13: 3908
[111] Zhu C B, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes [J]. Science, 2017, 358: eaao2808
[112] Striemer C C, Gaborski T R, McGrath J L, et al. Charge- and size-based separation of macromolecules using ultrathin silicon membranes [J]. Nature, 2007, 445: 749
[113] Cheng X Q, Wang Z X, Jiang X, et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials [J]. Prog. Mater. Sci., 2018, 92: 258
[114] Serre P, Ternon C, Stambouli V, et al. Fabrication of silicon nanowire networks for biological sensing [J]. Sens. Actuators, 2013, 182B: 390
[115] Tian B Z, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues [J]. Nat. Mater., 2012, 11: 986
[116] Chen Y Y, Hu Z P, Xu Y F, et al. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35: 512
[117] Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016: 1
[118] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
[119] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery [J]. Science, 2012, 337: 563
[120] Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J]. Nat. Nanotechnol., 2011, 6: 232
[121] Kramer D, Viswanath R N, Weissmüller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers [J]. Nano Lett., 2004, 4: 793
[122] Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes [J]. Electrochim. Acta, 2008, 53: 2757
[123] Detsi E, Onck P, De Hosson J T M. Metallic muscles at work: High rate actuation in nanoporous gold/polyaniline composites [J]. ACS Nano, 2013, 7: 4299
[124] Liu Z, Searson P C. Single nanoporous gold nanowire sensors [J]. J. Phys. Chem., 2006, 110B: 4318
[125] Liu Z N, Du J G, Qiu C C, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold [J]. Electrochem. Commun., 2009, 11: 1365
[126] Feng R, Zhang Y, Yu H Q, et al. Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection [J]. Biosens. Bioelectron., 2013, 42: 367
[127] Cai J, Xu J, Wang J M, et al. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2013, 38: 934
[128] Liu T, Xie L, Li Y Q, et al. Hydrogen/deuterium storage properties of Pd nanoparticles [J]. J. Power Sources, 2013, 237: 74
[129] Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release [J]. Small, 2014, 10: 4154
[130] Chapman C A R, Chen H, Stamou M, et al. Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size [J]. ACS Appl. Mater. Interfaces, 2015, 7: 7093
[131] Zhang A, Wang J Y, Schützendübe P, et al. Beyond dealloying: Development of nanoporous gold via metal-induced crystallization and its electrochemical properties [J]. Nanotechnology, 2019, 30: 375601, doi: 10.1088/1361-6528/ab2616
[132] Ad?i? R R, Markovi? N M. Structural effects in electrocatalysis: Oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms [J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 138: 443
[133] Wan L P, Qin Y, Xiang J. Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction [J]. Electrochim. Acta, 2017, 238: 220
[134] Lu L F, Zou S H, Zhou Y H, et al. Ligand-regulated ORR activity of Au nanoparticles in alkaline medium: The importance of surface coverage of ligands [J]. Catal. Sci. Technol., 2018, 8: 746
[1] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[2] 刘成松,叶飞. 热处理过程中界面固相反应控制锰硅类氧化物变性的机理研究[J]. 金属学报, 2017, 53(1): 10-18.
[3] 汪伟; 卢柯 . 磁控溅射Cu/Al多层膜的固相反应[J]. 金属学报, 2003, 39(1): 1-4 .
[4] 吴萍;姜恩永;王存达;白海力;王合英;刘裕光. 退火[Co/Cu]多层膜的固相反应与磁性[J]. 金属学报, 1997, 33(6): 631-637.