|
|
金属诱导晶化基础与应用研究进展 |
王祖敏1( ),张安1,陈媛媛1,黄远1,王江涌2 |
1. 天津大学材料科学与工程学院 天津 300350 2. 汕头大学物理系 汕头 515063 |
|
Research Progress on Fundamentals and Applications of Metal-Induced Crystallization |
WANG Zumin1( ),ZHANG An1,CHEN Yuanyuan1,HUANG Yuan1,WANG Jiangyong2 |
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2. Department of Physics, Shantou University, Shantou 515063, China |
引用本文:
王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
Zumin WANG,
An ZHANG,
Yuanyuan CHEN,
Yuan HUANG,
Jiangyong WANG.
Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. Acta Metall Sin, 2020, 56(1): 66-82.
[1] | Oki F, Ogawa Y, Fujiki Y. Effect of deposited metals on the crystallization temperature of amorphous germanium film [J]. Jpn. J. Appl. Phys., 1969, 8: 1056 | [2] | Bosnell J R, Voisey U C. The influence of contact materials on the conduction crystallization temperature and electrical properties of amorphous germanium, silicon and boron films [J]. Thin Solid Films, 1970, 6: 161 | [3] | Herd S R, Chaudhari P, Brodsky M H. Metal contact induced crystallization in films of amorphous silicon and germanium [J]. J. Non-Cryst. Solids, 1972, 7: 309 | [4] | Ottaviani G, Sigurd D, Marrello V, et al. Crystal growth of silicon and germanium in metal films [J]. Science, 1973, 180: 948 | [5] | Sigurd D, Ottaviani G, Arnal H J, et al. Crystallization of Ge and Si in metal films. II [J]. J. Appl. Phys., 1974, 45: 1740 | [6] | Brodsky M H, Turnbull D. Low temperature eutectic induced crystallization of amorphous materials [A]. AMER Inst Physics Circulation Fulfillment Div, 500 Sunnyside Blvd, Woodbury [C]. 1971, 16(3): 304 | [7] | Konno T J, Sinclair R. Crystallization of silicon in aluminium/amorphous-silicon multilayers [J]. Philos. Mag., 1992, 66B: 749 | [8] | Sinclair R, Konno T J. In situ HREM: Application to metal-mediated crystallization [J]. Ultramicroscopy, 1994, 56: 225 | [9] | Konno T J, Sinclair R. Metal-mediated crystallization of amorphous silicon in silicon-silver layered systems [J]. Philos. Mag., 1995, 71B: 163 | [10] | Konno T J, Sinclair R. Metal-contact-induced crystallization of semiconductors [J]. Mater. Sci. Eng., 1994, A179-180: 426 | [11] | Sinclair R, Morgiel J, Kirtikar A S, et al. Direct observation of crystallization in silicon by in situ high-resolution electron microscopy [J]. Ultramicroscopy, 1993, 51: 41 | [12] | Nast O, Puzzer T, Koschier L M, et al. Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature [J]. Appl. Phys. Lett., 1998, 73: 3214 | [13] | Nast O, Hartmann A J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon [J]. J. Appl. Phys., 2000, 88: 716 | [14] | Nast O, Wenham S R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization [J]. J. Appl. Phys., 2000, 88: 124 | [15] | Lee S W, Jeon Y C, Joo S K. Pd induced lateral crystallization of amorphous Si thin films [J]. Appl. Phys. Lett., 1995, 66: 1671 | [16] | Lee S W, Joo S K. Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 160 | [17] | Jin Z H, Bhat G A, Yeung M, et al. Nickel induced crystallization of amorphous silicon thin films [J]. J. Appl. Phys., 1998, 84: 194 | [18] | Wang J Y, Zalar A, Zhao Y H, et al. Determination of the interdiffusion coefficient for Si/Al multilayers by Auger electron spectroscopical sputter depth profiling [J]. Thin Solid Films, 2003, 433: 92 | [19] | Zhao Y H, Wang J Y, Mittemeijer E J. Microstructural changes in amorphous Si/crystalline Al thin bilayer films upon annealing [J]. Appl. Phys., 2004, 79A: 681 | [20] | Wang J Y, Mittemeijer E J. A new method for the determination of the diffusion-induced concentration profile and the interdiffusion coefficient for thin film systems by Auger electron spectroscopical sputter depth profiling [J]. J. Mater. Res., 2004, 19: 3389 | [21] | He D, Wang J Y, Mittemeijer E J. The initial stage of the reaction between amorphous silicon and crystalline aluminum [J]. J. Appl. Phys., 2005, 97: 093524 | [22] | He D, Wang J Y, Mittemeijer E J. Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: Microstructural and thermodynamic analysis of layer exchange [J]. Appl. Phys., 2005, 80A: 501 | [23] | Wang J Y, He D, Zhao Y H, et al. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon [J]. Appl. Phys. Lett., 2006, 88: 061910 | [24] | Wang Z M, Wang J Y, Jeurgens L P H, et al. "Explosive" crystallisation of amorphous germanium in Ge/Al layer systems; Comparison with Si/Al layer systems [J]. Scr. Mater., 2006, 55: 987 | [25] | Wang J Y, Wang Z M, Mittemeijer E J. Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers [J]. J. Appl. Phys., 2007, 102: 113523 | [26] | Wang Z M, Wang J Y, Jeurgens L P H, et al. Tailoring the ultrathin Al-induced crystallization temperature of amorphous Si by application of interface thermodynamics [J]. Phys. Rev. Lett., 2008, 100: 125503 | [27] | Wang Z M, Wang J Y, Jeurgens L P H, et al. Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers [J]. Phys. Rev., 2008, 77B: 045424 | [28] | Wang Z M, Wang J Y, Jeurgens L P H, et al. Investigation of metal-induced crystallization in amorphous Ge/crystalline Al bilayers by Auger microanalysis and selected-area depth profiling [J]. Surf. Interface Anal., 2008, 40: 427 | [29] | Wang Z M, Wang J Y, Jeurgens L P H, et al. Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers [J]. Acta Mater., 2008, 56: 5047 | [30] | Wang Z M, Jeurgens L P H, Wang J Y, et al. Fundamentals of metal-induced crystallization of amorphous semiconductors [J]. Adv. Eng. Mater., 2009, 11: 131 | [31] | Wang Z M, Jeurgens L P H, Wang J Y, et al. High-resolution transmission-electron-microscopy study of ultrathin Al-induced crystallization of amorphous Si [J]. J. Mater. Res., 2009, 24: 3294 | [32] | Wang Z M, Gu L, Jeurgens L P H, et al. Thermal stability of Al/nanocrystalline-Si bilayers investigated by in situ heating energy-filtered transmission electron microscopy [J]. J. Mater. Sci., 2011, 46: 4314 | [33] | Wang Z M, Gu L, Phillipp F, et al. Metal-catalyzed growth of semiconductor nanostructures without solubility and diffusivity constraints [J]. Adv. Mater., 2011, 23: 854 | [34] | Wang Z M, Gu L, Jeurgens L P H, et al. Real-time visualization of convective transportation of solid materials at nanoscale [J]. Nano Lett., 2012, 12: 6126 | [35] | Gordon I, Carnel L, Van Gestel D, et al. Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization [J]. Thin Solid Films, 2008, 516: 6984 | [36] | Kim H Y, Seok K H, Chae H J, et al. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors [J]. Solid-State Electron., 2017, 132: 73 | [37] | Gordon I, Carnel L, Van Gestel D, et al. 8% efficient thin‐film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD [J]. Prog. Photovoltaics: Res. Appl., 2007, 15: 575 | [38] | Wang Z M, Mittemeijer E J. Vapor-defect-solid growth mechanism for NanoNets utilizing natural defect networks in polycrystals [J]. Mater. Des., 2018, 150: 206 | [39] | Hayzelden C, Batstone J L, Cammarata R C. In situ transmission electron microscopy studies of silicide-mediated crystallization of amorphous silicon [J]. Appl. Phys. Lett., 1992, 60: 225 | [40] | Hayzelden C, Batstone J L. Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films [J]. J. Appl. Phys., 1993, 73: 8279 | [41] | Yoon S Y, Park S J, Kim K H, et al. Metal-induced crystallization of amorphous silicon [J]. Thin Solid Films, 2001, 383: 34 | [42] | Cottrell T L. The Strengths of Chemical Bonds [M]. 2nd Ed., London: Butterworth, 1958: 1 | [43] | Hiraki A, Nicolet M A, Mayer J W. Low-temperature migration of silicon in thin layers of gold and platinum [J]. Appl. Phys. Lett., 1971, 18: 178 | [44] | Hiraki A, Shuto K, Kim S, et al. Room-temperature interfacial reaction in Au-semiconductor systems [J]. Appl. Phys. Lett., 1977, 31: 611 | [45] | Hiraki A. Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? [J]. Surf. Sci. Rep., 1983, 3: 357 | [46] | Hiraki A. A model on the mechanism of room temperature interfacial intermixing reaction in various metal-semiconductor couples: What triggers the reaction? [J]. J. Electrochem. Soc., 1980, 127: 2662 | [47] | Okuno K, Ito T, Iwami M, et al. Presence of critical Au-film thickness for room temperature interfacial reaction between Au(Film) and Si(Crystal substrate) [J]. Solid State Commun., 1980, 34: 493 | [48] | Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1 | [49] | Egerton R F. Electron Energy-Loss Spectroscopy in the Electron Microscope [M]. 3rd Ed., Boston, MA: Springer, 2011: 1 | [50] | Jeurgens L P H, Wang Z M, Mittemeijer E J. Thermodynamics of reactions and phase transformations at interfaces and surfaces [J]. Int. J. Mater. Res., 2009, 100: 1281 | [51] | Slater J C. Atomic radii in crystals [J]. J. Chem. Phys., 1964, 41: 3199 | [52] | Li B Q, Zheng B, Zhang S Y, et al. Dependence of fractal formation on the thickness ratio in Al/a-Ge bilayers [J]. Phys. Rev., 1993, 47B: 3638 | [53] | Katsuki F, Hanafusa K, Yonemura M, et al. Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate [J]. J. Appl. Phys., 2001, 89: 4643 | [54] | Seibt M, Buschbaum S, Gnauert U, et al. Nanoscale observation of a grain boundary related growth mode in thin film reactions [J]. Phys. Rev. Lett., 1998, 80: 774 | [55] | Zhang T W, Ma F, Zhang W L, et al. Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe [J]. Appl. Phys. Lett., 2012, 100: 071908 | [56] | Hu S, McIntyre P C. Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures [J]. J. Appl. Phys., 2012, 111: 044908 | [57] | Hu S, Marshall A F, McIntyre P C. Interface-controlled layer exchange in metal-induced crystallization of germanium thin films [J]. Appl. Phys. Lett., 2010, 97: 082104 | [58] | Gardelis S, Nassiopoulou A G, Manousiadis P, et al. A silicon-wafer based p-n junction solar cell by aluminum-induced recrystallization and doping [J]. Appl. Phys. Lett., 2013, 103: 241114 | [59] | Scholz M, Gjukic M, Stutzmann M. Silver-induced layer exchange for the low-temperature preparation of intrinsic polycrystalline silicon films [J]. Appl. Phys. Lett., 2009, 94: 012108 | [60] | Park J H, Kurosawa M, Kawabata N, et al. Au-induced low-temperature (~250 ℃) crystallization of Si on insulator through layer-exchange process [J]. Electrochem. Solid-State Lett., 2011, 14: H232 | [61] | Tai L X, Zhu D M, Liu X, et al. Direct growth of graphene on silicon by metal-free chemical vapor deposition [J]. Nano-Micro Lett., 2018, 10: 20 | [62] | Gordon I, Van Gestel D, Qiu Y, et al. Processing and characterization of efficient thin-film polycrystalline silicon solar cells [A]. Proceedings of 2008 33rd IEEE Photovoltaic Specialists Conference [C]. San Diego, CA, USA: IEEE, 2008: 1 | [63] | ? Tüzün, Slaoui A, Gordon I, et al. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping [J]. Thin Solid Films, 2008, 516: 6892 | [64] | ? Tüzün, Qiu Y, Slaoui A, et al. Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 1869 | [65] | Gall S, Becker C, Lee K Y, et al. Polycrystalline silicon thin-film solar cells on ZnO:Al-coated glass substrates [A]. Proceedings of 2009 34th IEEE Photovoltaic Specialists Conference [C]. Philadelphia, PA: IEEE, 2009: 197 | [66] | Aberle A G, Straub A, Widenborg P I, et al. Polycrystalline silicon thin-film solar cells on glass by aluminium‐induced crystallisation and subsequent ion‐assisted deposition (ALICIA) [J]. Prog. Photovoltaics: Res. Appl., 2005, 13: 37 | [67] | Van Gestel D, Gordon I, Poortmans J. Metal induced crystallization of amorphous silicon for photovoltaic solar cells [J]. Phys. Procedia, 2011, 11: 196 | [68] | Prathap P, Tuzun O, Madi D, et al. Thin film silicon solar cells by AIC on foreign substrates [J]. Sol. Energy Mater. Sol. Cells, 2011, 95: S44 | [69] | Toko K, Numata R, Saitoh N, et al. Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange [J]. J. Appl. Phys., 2014, 115: 094301 | [70] | Numata R, Toko K, Saitoh N, et al. Orientation control of large-grained Si films on insulators by thickness-modulated Al-induced crystallization [J]. Cryst. Growth Des., 2013, 13: 1767 | [71] | Van Gestel D, Gordon I, Poortmans J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective [J]. Sol. Energy Mater. Sol. Cells, 2013, 119: 261 | [72] | Shekoofa O, Wang J, Li D J, et al. Nano-crystalline thin films fabricated by Si-Al co-sputtering and metal induced crystallization for photovoltaic applications [J]. Sol. Energy, 2018, 173: 539 | [73] | Shekoofa O, Wang J, Li D J, et al. P-silicon thin film fabricated by magnetron sputtering and aluminium induced crystallization for Schottky silicon solar cells [J]. Mater. Sci. Semicond. Process., 2017, 71: 366 | [74] | Hamasha E, Masadeh G, Shariah A, et al. Aluminum induced crystallization of amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. Sol. Energy, 2016, 127: 223 | [75] | Hamasha K, Hamasha E, Masadeh G, et al. Aluminum-induced crystallization of hydrogenated amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. J. Disp. Technol., 2016, 12: 82 | [76] | Shekoofa O, Wang J, Luo Y, et al. Impacts of the annealing profile on AIC thin film solar cell characteristics fabricated by magnetron sputtering [A]. Proceedings of the 33rd International Conference on the Physics of Semiconductors [C]. Beijing: IOP Publishing, 2017: 012006 | [77] | Toko K, Nakata M, Okada A, et al. Influence of substrate on crystal orientation of large-grained Si thin films formed by metal-induced crystallization [J]. Int. J. Photoenergy, 2015, 2015: 790242 | [78] | Bhopal M F, Lee D W, Lee S H. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate [J]. Electron. Mater. Lett., 2016, 12: 651 | [79] | Karaman M, Tüzün ?zmen ?, Sedani S H, et al. Effects of glass substrate coated by different-content buffer layer on the quality of poly‐Si thin films [J]. Phys. Status Solidi, 2016, 213A: 3142 | [80] | Hainey Jr M F, Innocent-Dolor J L, Choudhury T H, et al. Controlling silicon crystallization in aluminum-induced crystallization via substrate plasma treatment [J]. J. Appl. Phys., 2017, 121: 115301 | [81] | Sanford J L, Libsch F R. 4.2: TFT AMOLED pixel circuits and driving methods [J]. SID Symp. Dig. Tech. Pap.,2003, 34: 10 | [82] | Lee J H, You B H, Han C W, et al. P-2: A new a-Si:H TFT pixel circuit suppressing OLED current error caused by the hysteresis and threshold voltage shift for active matrix organic light emitting diode [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 228 | [83] | Hasumi T, Takasugi S, Kanoh K, et al. 46.2: New OLED pixel circuit and driving method to suppress threshold voltage shift of a-Si:H TFT [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1547 | [84] | Yeh S H, Sun W T, Yu J S, et al. P-173L: Late-news poster: A 2.2-inch QVGA system-on-glass LCD using P-type low temperature poly-silicon thin film transistors [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 352 | [85] | Chang Y J, Kim Y L, Shim S H, et al. 28.3: World's largest (21.3 in.) UXGA non-laser LTPS AMLCD [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1276 | [86] | Lee S W, Ihn T H, Joo S K. Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 407 | [87] | Meng Z G, Wang M X, Wong M. High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications [J]. IEEE Trans. Electron Devices, 2000, 47: 404 | [88] | Cammarata R C, Thompson C V, Hayzelden C, et al. Silicide precipitation and silicon crystallization in nickel implanted amorphous silicon thin films [J]. J. Mater. Res., 1990, 5: 2133 | [89] | Meng Z G, Chen H Y, Qiu C F, et al. 24.3: Active‐matrix organic light-emitting diode display implemented using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors [J]. SID Symp. Dig. Tech. Pap., 2001, 32: 380 | [90] | Zhao S Y, Meng Z G, Wong M, et al. Metal-induced continuous zonal domain (CZD) polycrystalline silicon thin-film transistors and its application on field sequential color liquid crystal display [J]. J. Disp. Technol., 2010, 6: 135 | [91] | Meng Z G, Li C, Kwok H S, et al. Application of re-crystallized metal‐induced unilaterally crystallized polycrystalline-silicon thin-film-transistor technology to reflective liquid-crystaldisplay [J]. J. Soc. Inf. Disp., 2001, 9: 319 | [92] | Kim S H, Lee S H, Park W H, et al. 48.3: A 2 inch LTPS AMOLED with an embedded lateral p-i-n photodiode sensors [J]. SID Symp. Dig. Tech. Pap., 2008, 39: 724 | [93] | Chen Y H, Yen L C, Chang T S, et al. Low-temperature polycrystalline-silicon tunneling thin-film transistors with MILC [J]. IEEE Electron Device Lett., 2013, 34: 1017 | [94] | Ma W C Y, Hsu H S, Fang C C, et al. Impacts of channel film thickness on poly-Si tunnel thin-film transistors [J]. Thin Solid Films, 2018, 660: 926 | [95] | Nakata M, Toko K, Saitoh N, et al. Orientation control of intermediate-composition SiGe on insulator by low-temperature Al-induced crystallization [J]. Scr. Mater., 2016, 122: 86 | [96] | Matsumura R, Wang Y F, Jevasuwan W, et al. Single grain growth of Si thin film on insulating substrate by limited region aluminum induced crystallization [J]. Mater. Lett., 2019, 252: 100 | [97] | Park J H, Seok K H, Kiaee Z, et al. Thermal stress effects on the electrical properties of p-channel polycrystalline-silicon thin-film transistors fabricated via metal-induced lateral crystallization [J]. IEEE Trans. Semicond. Manuf., 2015, 28: 35 | [98] | Park J H, Han J S, Joo S K. Electrical properties of metal-induced laterally crystallized p-type LTPS-TFT with high-κ ZrTiO4 gate dielectric featuring low equivalent-oxide-thickness [J]. IEEE Trans. Electron Devices, 2016, 63: 2391 | [99] | Shamim M Z, Persheyev S K, Rose M J. Electron field emission display based on AIC-PECVD thin silicon films [A]. Proceedings of 2016 10th International Conference on Intelligent Systems and Control [C]. Coimbatore, India: IEEE, 2016: 1 | [100] | Ohkubo S, Ide T, Okada M. Basic study of write-once media for blue-violet laser [J]. Tech. Dig. Opt. Data Storage, 2001: 34 | [101] | Lee J B, Lee C J, Choi D K. Influences of various metal elements on field aided lateral crystallization of amorphous silicon films [J]. Jpn. J. Appl. Phys., 2001, 40: 6177 | [102] | Inoue H, Mishima K, Aoshima M, et al. Inorganic write-once disc for high speed recording [J]. Jpn. J. Appl. Phys., 2003, 42: 1059 | [103] | Her Y C, Wu C L. Feasibility of Cu/a-Si bilayer for high data-transfer-rate write-once blue-ray recording [J]. Jpn. J. Appl. Phys., 2004, 43: 1013 | [104] | Germain P, Squelard S, Bourgoin J, et al. Crystallization kinetics of amorphous germanium [J]. J. Appl. Phys., 1977, 48: 1909 | [105] | Wu T H, Kuo P C, Fang Y H, et al. Microstructure and recording mechanism of Ge/Au bilayer media for write-once optical disc [J]. Appl. Phys. Lett., 2007, 90: 151111 | [106] | Her Y C, Chen J H, Tsai M H, et al. Nickel-induced crystallization of amorphous Ge film for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2009, 106: 023530 | [107] | Her Y C, Tu W T, Tsai M H. Phase transformation and crystallization kinetics of a-Ge/Cu bilayer for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2012, 111: 043503 | [108] | Nakata M, Toko K, Jevasuwan W, et al. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates [J]. Appl. Phys. Lett., 2015, 107: 133102 | [109] | Toko K, Nakata M, Jevasuwan W, et al. Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor-liquid-solid growth [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18120 | [110] | Toko K, Nakazawa K, Saitoh N, et al. Double-layered Ge thin films on insulators formed by an Al-induced layer-exchange process [J]. Cryst. Growth Des., 2013, 13: 3908 | [111] | Zhu C B, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes [J]. Science, 2017, 358: eaao2808 | [112] | Striemer C C, Gaborski T R, McGrath J L, et al. Charge- and size-based separation of macromolecules using ultrathin silicon membranes [J]. Nature, 2007, 445: 749 | [113] | Cheng X Q, Wang Z X, Jiang X, et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials [J]. Prog. Mater. Sci., 2018, 92: 258 | [114] | Serre P, Ternon C, Stambouli V, et al. Fabrication of silicon nanowire networks for biological sensing [J]. Sens. Actuators, 2013, 182B: 390 | [115] | Tian B Z, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues [J]. Nat. Mater., 2012, 11: 986 | [116] | Chen Y Y, Hu Z P, Xu Y F, et al. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35: 512 | [117] | Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016: 1 | [118] | Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245 | [119] | Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery [J]. Science, 2012, 337: 563 | [120] | Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J]. Nat. Nanotechnol., 2011, 6: 232 | [121] | Kramer D, Viswanath R N, Weissmüller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers [J]. Nano Lett., 2004, 4: 793 | [122] | Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes [J]. Electrochim. Acta, 2008, 53: 2757 | [123] | Detsi E, Onck P, De Hosson J T M. Metallic muscles at work: High rate actuation in nanoporous gold/polyaniline composites [J]. ACS Nano, 2013, 7: 4299 | [124] | Liu Z, Searson P C. Single nanoporous gold nanowire sensors [J]. J. Phys. Chem., 2006, 110B: 4318 | [125] | Liu Z N, Du J G, Qiu C C, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold [J]. Electrochem. Commun., 2009, 11: 1365 | [126] | Feng R, Zhang Y, Yu H Q, et al. Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection [J]. Biosens. Bioelectron., 2013, 42: 367 | [127] | Cai J, Xu J, Wang J M, et al. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2013, 38: 934 | [128] | Liu T, Xie L, Li Y Q, et al. Hydrogen/deuterium storage properties of Pd nanoparticles [J]. J. Power Sources, 2013, 237: 74 | [129] | Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release [J]. Small, 2014, 10: 4154 | [130] | Chapman C A R, Chen H, Stamou M, et al. Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size [J]. ACS Appl. Mater. Interfaces, 2015, 7: 7093 | [131] | Zhang A, Wang J Y, Schützendübe P, et al. Beyond dealloying: Development of nanoporous gold via metal-induced crystallization and its electrochemical properties [J]. Nanotechnology, 2019, 30: 375601, doi: 10.1088/1361-6528/ab2616 | [132] | Ad?i? R R, Markovi? N M. Structural effects in electrocatalysis: Oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms [J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 138: 443 | [133] | Wan L P, Qin Y, Xiang J. Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction [J]. Electrochim. Acta, 2017, 238: 220 | [134] | Lu L F, Zou S H, Zhou Y H, et al. Ligand-regulated ORR activity of Au nanoparticles in alkaline medium: The importance of surface coverage of ligands [J]. Catal. Sci. Technol., 2018, 8: 746 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|