Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 148-155    DOI: 10.3724/SP.J.1037.2013.00680
  本期目录 | 过刊浏览 |
高性能铜系层状金属材料设计: 纳米尺度下强化能力与韧化能力思考*
张广平(), 朱晓飞
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
DESIGN OF HIGH-PERFORMANCE Cu-BASED NANO-LAYERED MATERIALS: ON STRENGTHENING AND TOUGHENING ABILITIES AT THE NANOSCALES
ZHANG Guangping(), ZHU Xiaofei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张广平, 朱晓飞. 高性能铜系层状金属材料设计: 纳米尺度下强化能力与韧化能力思考*[J]. 金属学报, 2014, 50(2): 148-155.
Guangping ZHANG, Xiaofei ZHU. DESIGN OF HIGH-PERFORMANCE Cu-BASED NANO-LAYERED MATERIALS: ON STRENGTHENING AND TOUGHENING ABILITIES AT THE NANOSCALES[J]. Acta Metall Sin, 2014, 50(2): 148-155.

全文: PDF(1118 KB)   HTML
摘要: 

对近年来国内外在纳米层状金属材料的强化能力及其尺度与界面效应、塑性形变行为及稳定性等基本规律的研究进展进行了系统的总结, 并对纳米层状材料的强化能力与韧化能力进行了深入的探讨. 最后, 对纳米层状金属材料的强化与韧化能力中的关键科学问题及未来研究进行了展望.

关键词 纳米尺度金属层状材料强度塑性形变    
Abstract

In this paper, recent investigations on strengthening ability and effects of length scale and interface, plastic deformation behavior and stability of nanolayered metallic materials are reviewed systematically. The basic mechanisms on the abilities in strengthening and toughening for nanolayered metallic materials were discussed. Finally, several key issues on improving the strengthening and toughening abilities of the nanolayered materials and the potential investigations in the future are stressed.

Key wordsnanoscale    metal    layered material    strength    plastic deformation
收稿日期: 2013-12-13     
ZTFLH:  TG146  
基金资助:*国家重点基础研究发展计划项目2010CB631003及国家自然科学基金项目51001105, 51071158和51371180资助
作者简介: null

张广平, 男, 1966年生, 研究员

图1  
图2  
图3  
图4  
图5  
图6  
[1] Hall E O. Proc Phys Soc, 1951; 64B: 747
[2] Petch N J. J Iron Steel Inst, 1953; 174: 25
[3] Iwahashi Y, Wang J T, Horita Z, Nemoto M, Langdon T G. Scr Mater, 1996; 35: 143
[4] Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T. JOM, 2006; 58(4): 33
[5] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[6] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221
[7] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 788
[8] Meyers M A,Chawla K K. Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 2009: 1
[9] Sevillano J G. In: Cahn R W, Haasen P, Kramer E, eds., Materials Science and Technology: A Comprehensive Treatment Plastic Deformation and Fracture of Materials. New York: VCH, 1993: 19
[10] Blum W. Trans Am Electrochem Soc, 1921; 40: 307
[11] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1
[12] Clemens B M, Kung H, Barnett S A.MRS Bull, 1999; 24: 20
[13] Misra A, Hirth J P, Kung H. Philos Mag, 2002; 82A: 2935
[14] Zhang G P, Liu Y, Wang W, Tan J. Appl Phys Lett, 2006; 88: 013105
[15] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874
[16] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[17] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. Acta Mater, 2007; 55: 345
[18] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J. Scr Mater, 2007; 57: 117
[19] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593
[20] Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
[21] Yan J W, Zhang G P, Zhu X F, Liu H S, Yan C. Philos Mag, 2013; 93: 434
[22] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[23] Armstrong R W. In: Martin J W, ed., Concise Encyclopedia of the Mechanical Properties of Materials. Oxford: Elsevier, 2007: 601
[24] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[25] Lehoczky S L. J Appl Phys, 1978; 49: 5479
[26] Zhang X, Misra A, Wang H, Shen T D, Swadener J G, Embury J D, Kung H, Hoagland R G, Nastasi A. J Mater Res, 2003; 18: 1600
[27] Huang H B, Spaepen F. Acta Mater, 2000; 48: 3261
[28] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[29] Hoagland R G, Kurtz R J, Henager C H. Scr Mater, 2004; 50: 775
[30] Anderson P M, Foecke T, Hazzledine P M. MRS Bull, 1999; 24: 27
[31] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877
[32] Koehler J S. Phys Rev, 1970; 2B: 547
[33] Hoagland R G, Mitchell T E, Hirth J P, Kung H. Philos Mag, 2002; 82A: 643
[34] Rao S I, Hazzledine P M. Philos Mag, 2000; 80A: 2011
[35] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905
[36] Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J.Philos Mag Lett, 2010; 90: 413
[37] Li Y P, Zhu X F, Tan J, Wu B, Zhang G P. Philos Mag Lett, 2009; 89: 66
[38] Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877
[39] Tench D M, White J T. J Electrochem Soc, 1991; 138: 3757
[40] Mara N A, Misra A, Hoagland R G, Sergueeva A V, Tamayo T, Dickerson P, Mukherjee A K. Mater Sci Eng, 2008; A493: 274
[41] Lewis A C, Eberl C, Hemker K J, Weihs T P. J Mater Res, 2008; 23: 376
[42] Huang B, Ishihara K N, Shingu P H. J Mater Sci Lett, 2001; 20: 1669
[43] Wang Y M, Li J, Hamza A V, Barbee T W. Proc Nat Acad Sci, 2007; 104: 11155
[44] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101
[45] Donohue A, Spaepen F, Hoagland R G, Misra A. Appl Phys Lett, 2007; 91: 241905
[46] Kavarana F H, Ravichandran K S, Sahay S S. Scr Mater, 2000; 42: 947
[47] Li Y P, Tan J, Zhang G P. Scr Mater, 2008; 59: 1226
[48] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P. J Mater Res, 2009; 24: 728
[49] Xie J Y, Huang P, Wang F, Li Y, Zhang L F, Xu K W. Integr Ferroelectr, 2013; 146: 168
[50] Wang D, Kups T, Schawohl J, Schaaf P.J Mater Sci, 2012; 23: 1077
[51] Wen S P, Zeng F, Pan F, Nie Z R. Mater Sci Eng, 2009; A526: 166
[52] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A. J Mater Res, 2009; 24: 1291
[53] Knorr I, Cordero N M, Lilleodden E T, Volkert C A. Acta Mater, 2013; 61: 4984
[54] Li Y P, Zhu X F, Zhang G P, Tan J, Wang W, Wu B. Philos Mag, 2010; 90: 3049
[55] Wang F, Huang P, Xu M, Lu T J, Xu K W. Mater Sci Eng, 2011; A528: 7290
[56] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. J Mater Res, 2007; 22: 3423
[57] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A. Appl Phys Lett, 2010; 97: 021909
[58] Liu M C, Lee C J, Lai Y H, Huang J C. Thin Solid Films, 2010; 518: 7295
[59] Zhang J Y, Lei S, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J.Acta Mater, 2012; 60: 1610
[60] Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M. Nat Commun, 2013; 4: 2114
[61] Chen I W, Winn E J, Menon M.Mater Sci Eng, 2001; A317: 226
[62] Yan J W, Zhu X F, Yang B, Zhang G P. Phys Rev Lett, 2013; 110: 155502
[63] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[64] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[65] Yan F K, Liu G Z, Tao N R, Lu K. Acta Mater, 2012; 60: 1059
[66] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2011; 59: 7368
[67] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M. Thin Solid Films, 2011; 519: 3213
[68] Liu M C, Du X H, Lin I C, Pei H J, Huang J C.Intermetallics, 2012; 30: 30
[69] Uchic M D, Dimiduk D M, Florando J N, Nix W D. Science, 2004; 305: 986
[70] Volkert C A, Minor A M.MRS Bull, 2007; 32: 389
[71] Zheng S J, Beyerlein I J, Wang J, Carpenter J S, Han W Z, Mara N A. Acta Mater, 2012; 60: 5858
[72] Wang J, Misra A, Hoagland R G, Hirth J P. Acta Mater, 2012; 60: 1503
[73] Zhang B, Tan H F, Yan J W, Zhang M D, Sun X D, Zhang G P. Nanoscale Res Lett, 2013; 8: 44
[74] Liu H S, Zhang B, Zhang G P.Scr Mater, 2011; 64: 13
[75] Liu H S, Zhang B, Zhang G P. Scr Mater, 2011; 65: 891
[76] Liu H S. PhD Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[76] (刘华赛. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[6] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[7] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[8] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[11] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[12] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[13] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[14] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.