Please wait a minute...
金属学报  2014, Vol. 50 Issue (2): 156-168    DOI: 10.3724/SP.J.1037.2013.00616
  本期目录 | 过刊浏览 |
剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*
倪颂1(), 廖晓舟2, 朱运田3
1 中南大学粉末冶金国家重点实验室, 长沙 410083
2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,Sydney, NSW 2006, Australia
3 Department of Materials Science & Engineering, North Carolina State University,Raleigh, NC 27659-7919, USA
EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS
NI Song1(), LIAO Xiaozhou2, ZHU Yuntian3
1 State Key Lab of Powder Metallurgy, Central South University, Changsha 410083
2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
3 Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27659-7919, USA
引用本文:

倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.
Song NI, Xiaozhou LIAO, Yuntian ZHU. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS[J]. Acta Metall Sin, 2014, 50(2): 156-168.

全文: PDF(6342 KB)   HTML
摘要: 

综述了剧烈塑性变形引起的块体纳米金属材料的结构和力学性能演变. 以电化学沉积法制备的fcc结构纳米晶Ni-20%Fe (质量分数)合金为研究对象, 通过对其进行不同应变量的高压扭转实验, 系统分析了变形引起的结构和力学性能演变. 结构表征结果表明: (1) 变形引发纳米晶Ni-Fe合金晶粒旋转, 实现晶粒长大. 同时, 晶粒长大过程伴随着位错密度、孪晶密度的演变; (2) 存在一个最有利于变形孪晶生成的晶粒尺寸范围(45~100 nm), 在这个晶粒尺寸范围之外, 去孪晶起主导作用使原有的生长孪晶或变形孪晶消失; (3) 位错密度是影响位错与孪晶反应的新的影响因素. 当发生孪晶的晶粒内位错密度低时, 位错可完全穿过孪晶界, 部分穿过孪晶界, 或被孪晶界吸收; 发生孪晶的晶粒内位错密度高时, 大量位错缠绕并堆积在孪晶界附近, 形成应力集中, 破坏孪晶界原有的共格性. 为释放局部应力, 将从孪晶界的另一侧发射不全位错形成层错和二次孪晶; (4) 在塑性变形导致的晶粒长大过程中, 原先偏聚于消失了的晶界上的C和S沿残留晶界扩散并继续偏聚于晶界上. 结构与力学性能关系结果表明: 随着应变量的增加, 应变强化、应变软化交替出现. 位错密度对硬度的演变起主导作用, 其它结构演变(如孪晶密度的变化和晶粒尺寸变化)对硬度的演变起次要作用.

关键词 剧烈塑性变形纳米材料位错孪晶应变强化应变软化    
Abstract

Severe plastic deformation techniques including high-pressure torsion and equal channel angular pressing have been widely used to refine coarse-grained materials to produce nanocrystalline and ultrafine-grained materials, or manipulate the microstructure of nanocystalline materials for superior mechanical properties. This paper overviews severe plastic deformation induced structural and mechanical property evolutions on bulk nanocrystalline metals, mainly in a nanocrystalline Ni-20%Fe (mass fraction) alloy with a face-centred cubic (fcc) structure processed by high-pressure torsion to different strain values. The structural evolution and mechanical property evolution at different strain values were studied. Comprehensive characterizations on structural evolution during deformation indicate that: (1) grain growth occurred via grain rotation, and is accompanied with changes in dislocation density and twin density; (2) there is a significant grain size effect on deformation induced twinning and de-twinning. There exists an optimum grain size range for the formation of deformation twins. Outside of this grain size range the de-twinning process will dominate to annihilate existing twins; (3) different types of dislocation-twin boundary (TB) interactions occurred during deformation. Dislocation density plays an important role in dislocation-TB interactions. In a twinned grain with a low dislocation density, a dislocation may react with a TB to fully or partially penetrate the TB or to be absorbed by the TB via different dislocation reactions. In a twinned grain with a high dislocation density, dislocations tangle with each other and are pinned at the TBs, leading to the accumulation of dislocations at the TBs and raising the local strain energy. In order to release the stress concentration, stacking faults and secondary twins formed by partial dislocation emissions from the other side of the TB; (4) atom probe tomography investigation reveals that C and S atoms, which are the major impurities in the Ni-Fe alloy and segregated at grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during high-pressure torsion. Investigation on structure-hardness relationship of the Ni-Fe alloy reveals that: strain hardening and strain softening occurred at different deformation stages. Dislocation density evolution plays a major role in the hardness evolution, while other structural evolutions, including twin density and grain size evolutions, play minor roles in the hardness evolution.

Key wordssevere plastic deformation    nanocrystalline material    dislocation    twin    strain hardening    strain softening
收稿日期: 2013-09-26     
ZTFLH:  TG14  
基金资助:* 国家自然科学基金项目51301207和中国博士后科学基金项目2013M531806资助
作者简介: null

倪 颂, 女, 1982年生, 副教授, 博士

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
图12  
图13  
图14  
Deformation stage Equivalent strain Dislocation
density / m-2
Average grain
size / nm
As-deposited 0 2.2 × 1015 21
I 0~4.5 3.6 × 1015 22
II 4.5~20 5.8 × 1015 30
III 20~35 4.1 × 1015 35
IV 35~182 6.0 × 1015 50
V 180~340 2.1 × 1015 72
VI 340~550 2.0 × 1015 120
  
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. J Mater Res, 2002; 17: 5
[5] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[6] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[7] Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
[8] Wang K, Tao N R, Liu G, Lu J. Acta Mater, 2006; 54: 5281
[9] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[10] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[11] Mohamed F A. Acta Mater, 2003; 51: 4107
[12] Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Ringer S P, Horita Z, Langdon T G, Zhu Y T, Mater Sci Eng, 2010; A527: 4959
[13] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[14] Liao X Z, Kilmanetov A R, Valiev R Z, Gao H S, Li S D, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
[15] Wang Y B, Ho J C, Liao X Z, Li H Q, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 011908
[16] Li L, Ungar T, Wang Y D, Fan G J, Yang Y L, Jia N, Ren Y, Tichy G, Lendvai J, Choo H, Liaw P K. Scr Mater, 2009; 60: 317
[17] Fan G J, Fu L F, Choo H, Liaw P K, Browning N D. Acta Mater, 2006; 54: 4781
[18] Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V, Hemker K J. Acta Mater, 2006; 54: 2253
[19] Fan G J, Wang Y D, Fu L F, Choo H, Liaw P K, Ren Y, Browning N D. Appl Phys Lett, 2006; 88: 171914
[20] Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[21] Li L, Ungar T, Wang Y D, Morris J R, Tichy G, Lendvai J, Yang Y L, Ren Y, Choo H, Liaw P K. Acta Mater, 2009; 57: 4988
[22] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2010; 64: 327
[23] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Phys Rev, 2012; 84B: 235401
[24] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 3398
[25] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 4807
[26] Li H Q, Ebrahimi F. Mater Sci Eng, 2003; A347: 93
[27] Ni S, Sha G, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhu Y T, Langdon T G, Ringer S P. Mater Sci Eng, 2011; A528: 7500
[28] Sansoz F, Dupont V. Appl Phys Lett, 2006; 89: 111901
[29] Farkas D, Froseth A, Swygenhoven H V. Scr Mater, 2006; 55: 695
[30] Shan Z W, Stach E A, Wiezorek J M K, Knap J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[31] Wang Y B, Li B Q, Sui M L, Mao S X. Appl Phys Lett, 2008; 92: 011903
[32] Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
[33] Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
[34] Rodney D, Phillips R. Phys Rev Lett, 1999; 82: 1704
[35] Wu X L, Zhu Y T. Phys Rev Lett, 2008; 101: 025503
[36] Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[37] Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W, Zhu Y T. Appl Phys Lett, 2003; 83: 632
[38] Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2002; 50: 5005
[39] Li N, Wang J, Huang J Y, Misra A, Zhang X. Scr Mater, 2011; 64: 149
[40] Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P. Acta Mater, 2010; 58: 2262
[41] Zhang J Y, Liu G, Wang R H, Li J, Sun J, Ma E. Phys Rev, 2010; 81B: 172104
[42] Zhu Y T, Liao X Z, Srinivasan S G, Lavernia E J. J Appl Phys, 2005; 98: 034319
[43] Wen H M, Zhao Y H, Li Y, Ertorer O, Nesterov K M, Islamgaliev R K, Valiev R Z, Lavernia E J. Philos Mag, 2010; 90: 4541
[44] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[45] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[46] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[47] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[48] Wang Y B, Wu B, Sui M L. Appl Phys Lett, 2008; 93: 041906
[49] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
[50] Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 4135
[51] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[52] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H.Scr Mater, 2006; 54: 1163
[53] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[54] Rice J R. J Mech Phys Solid, 1992; 40: 239
[55] Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[56] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Acta Mater, 2012; 60: 3181
[57] Huang J Y, Zhu Y T, Liao X Z, Valiev R Z. Philos Mag Lett, 2004; 84: 183
[58] Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[59] Ivanisenko Y, Maclaren I, Sauvage X, Valiev R Z, Fecht H J. Acta Mater, 2006; 54: 1659
[60] Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A, Valiev R Z. Acta Mater, 2006; 54: 3933
[61] Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, Valiev R Z. Acta Mater, 2004; 52: 4469
[62] Ivanisenko Yu V, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 433
[63] Shen H, Li Z, Günther B, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 385
[64] Wang Y B, Liao X Z, Zhao Y H, Cooley J C, Horita Z, Zhu Y T. Appl Phys Lett, 2013; 102: 231912
[65] Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[66] Okamoto H. Phase Diagram for Binary Alloy. OH, USA: ASM International, 2000: 1
[67] Gall R L, Liao G, Saindrenan G. Scr Mater, 1999; 41: 427
[68] Gall R L, Quérard E, Saindrenan G, Mourton H, Roptin D. Scr Mater, 1996; 35: 1175
[69] Parthasarathy T A, Shewmon P G. Scr Metall, 1983; 17: 943
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[6] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[12] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[13] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[14] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[15] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.